Bibliothèque pédagogique en ligne Math SUP/Math SPE

Notre bibliothèque en ligne est l'outil idéal pour réussir en Prépa Math Sup/Math Spé, vous pouvez accéder chez vous, tout au long de l'année à [Documents-SUPSPE] documents : cours et fiches de révision, exercices, problèmes, et annales corrigés.

Cliquez sur l'onglet indiquant votre année et votre filière pour accéder aux documents.

Math SUP
PTSI
Math SUP
MPSI
Math SUP
PCSI
Math SPÉ
MP
Math SPÉ
PC
Math SPÉ
PSI
Math SPÉ
PT
Les documents les plus consultés
Un problème qui propose l'étude et le calcul de quelques intégrales classiques, dont la célèbre int(sin(x)/x, x = 0..infinity). On considère ensuite la famille d'intégrales int(sin(x)/x exp(-tx), x = 0..infinity) dépendant du paramètre t. Ensuite on étudie et on calcule explicitement (c'est très technique) les intégrales int([sin(x)/x]n, x=0..infinity), pour n>1.
Niveau de difficulté : 
DOCUMENT  
On cherche à estimer le maximum de la fonction qui à x associe x(x-1)...(x-n)a^(x), où n est un entier et où a est un paramètre réel strictement positif. Cela conduit à des calculs approchés d’intégrales! On utilise les techniques classiques de majoration, notamment l’inégalité de Taylor-Lagrange.
Niveau de difficulté : 
DOCUMENT  
La méthode de Newton est un moyen classique pour approcher la solution d'une équation f(x) = 0 par itérations successives. Dans une première partie, après quelques généralités sur les fonctions contractantes, on étudie la rapidité de convergence de cette méthode: localement (d'une façon générale) puis globalement (sur deux exemples). La deuxième partie est consacrée aux cas des applications polynomiales, quand il s'agit de trouver la plus grande racine réelle. On voit notamment comment le degré de P ou la multiplicité de la racine cherchée peuvent influencer les performances de la méthode.
Niveau de difficulté : 
DOCUMENT  
* Matrices à coefficients dans un corps K Définitions ; matrices particulières ; opérations sur les matrices (structure d'ev pour les matrices de type (n,p), d'algèbre pour les matrices carrées d'ordre n) ; diverses méthodes de calculs de puissances de matrices ; matrices triangulaires, diagonales ; transposition ; matrices symétriques, antisymétriques ; trace d'une matrice * Matrices et applications linéaires Interprétation matricielle des applications linéaires ; changements de bases ; matrices équivalentes, matrices semblables ; trace d'une matrice, d'un endomorphisme. * Calcul du rang Rang d'une famille de vecteurs, d'une application linéaire, d'une matrice ; matrices échelonnées ; opérations élémentaires sur les lignes ou les colonnes ; calcul du rang ; calcul de l'inverse d'une matrice par la méthode du pivot. * Systèmes d'équations linéaires Différentes interprétations ; structure de l'ensemble des solutions ; systèmes de Cramer ; résolution par la méthode du pivot.
DOCUMENT  
Dans ce problème on cherche à calculer l'intégrale F(a) = int(1/(1+t^a),R^+). Dans une première partie, on étudie le domaine de définition et la convexité de F. On calcule F(2), F(3), F(3/2). Dans une deuxième partie, on calcule F(a), pour tout a de la forme a = 2n/p, avec n,p entiers, et 2n > p. Cela nécessite des calculs trigonométriques, une décomposition en éléments simples, et du calcul intégral: tout cela est très technique donc très utile. Enfin, on aboutit à la formule F(a) = p/(a sin(p/a)), pour tout réel a > 1.
Niveau de difficulté : 
DOCUMENT  

Profitez pleinement de nos services !

Dans ce mode, tous les documents sont visibles, mais présentés sous forme d’extraits.
RECHERCHE DANS LES DOCUMENTS
LES UNES DU MONDE
LES PLUS CONSULTÉS