Une équation fonctionnelle

Problèmes

On cherche toutes les applications de R dans R qui satisfont à la relation f((x+y)/(1+xy))=f(x)f(y), et qui ont une dérivée positive à l’origine. Partant d’une solution f (en supposant qu’elle existe) on découvre peu à peu les propriétés de f, jusqu’à identifier les deux seules solutions. Un problème intéressant, et qui est le modèle de beaucoup d’autres.

Pages : 7

Niveau de difficulté : 

Ce problème est réservé aux abonnés, vous ne pouvez en visualiser qu'un court extrait.
Inscrivez vous pour profiter pleinement de l'ensemble du site.