Groupes, sous-groupes

Cours

* Lois de compositions Définition, parties stables, commutativité, associativité, distributivité ; éléments remarquables (neutre, symétrique d'un élément, élements simplifiables) ; morphismes, isomorphismes, isomorphisme réciproque ; propriétés "transportées" par un morphisme surjectif ; monoïde. * Stucture de groupe Définition ; groupe produit ; exemples divers de groupes ; dans un groupe les appns x->ax et x->xa sont bijectives ; table d'un groupe fini ; théorème de Lagrange. * Sous-groupes Définition ; caractérisations pour qu'une partie d'un groupe en soit un sous-groupe ; exemples ; les sous-groupes de (Z,+) sont les nZ ; intersections quelconques de sous-groupes ; morphismes de groupe ; image (directe ou réciproque) d'un sous-groupe ; image ou noyau d'un morphisme de groupe ; caractérisation de l'injectivité par le noyau. * Groupes monogènes Sous-groupe engendré par un élément (ou une partie) ; ordre d'un élément dans un groupe ; groupes monogènes, groupes cycliques (générateurs.) ; eExemple du groupe multiplicatif des racines n-ièmes de l'unité ; exemple des groupes (Z/nZ,+) * Le groupe symétrique Groupe des permutations de {1,2,...,n} ; cycles, transpositions ; décomposition d'une permutation en produit de cycles à supports disjoints deux à deux ; décomposition d'une permutation en produit de transpositions ; inversions, signature ; parité d'une permutation ; groupe alterné.

Pages : 18

Ce cours est réservé aux abonnés, vous ne pouvez en visualiser qu'un court extrait.
Inscrivez vous pour profiter pleinement de l'ensemble du site.