

EXERCICES DE MATHEMATIQUES

ANALYSE INTEGRALES

ENONCE DE L'EXERCICE-III

On pose pour tout x réel, $\varphi(x) = e^{-x^2} \int_0^x e^{t^2} dt$

- 1) Montrer que φ est de classe \mathcal{C}^{∞} sur \mathbb{R} et que : $\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ \varphi^{(n+1)}(x) = -2x\varphi^{(n)}(x) 2n\varphi^{(n-1)}(x)$
- 2) Montrer que φ admet un développement limité en 0 à tout ordre N. Déterminer ce développement limité.
- **3)** Montrer que $\forall x \geq 1$, $\int_{1}^{x} e^{t^2} dt = \frac{e^{x^2}}{2x} \frac{e}{2} + \frac{1}{2} \int_{1}^{x} \frac{e^{t^2}}{t^2} dt$.

Etudier le fonction $f: t \mapsto \frac{e^{t^2}}{t^4}$ sur $[1, +\infty[$ et en déduire que $\int_1^x e^{t^2} dt \underset{(+\infty)}{\sim} \frac{e^{x^2}}{2x}$. Montrer alors que $\varphi(x) \underset{(+\infty)}{\sim} \frac{1}{2x}$.