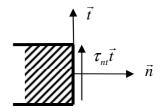


Filière MP, PSI, PT


RESISTANCE DES MATERIAUX CISAILLEMENT

1. DEFINITIONS

1.1. Cisaillement pur

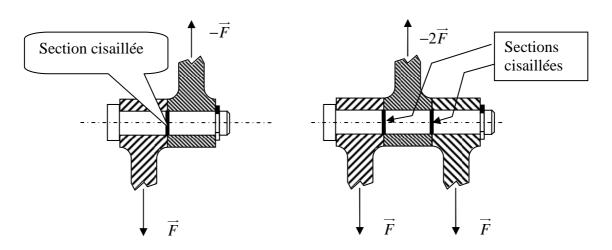
Dans une section (S) de normale \vec{n} , l'état de cisaillement pur est caractérisé par un vecteur contrainte de la forme :

$$\forall M \in (S), \quad \overrightarrow{\sigma}(M; \overrightarrow{n}) = 0\overrightarrow{n} + \tau_{nt}\overrightarrow{t} = \tau_{nt}\overrightarrow{t}$$

Exemple: Poutre en traction - compression!!!

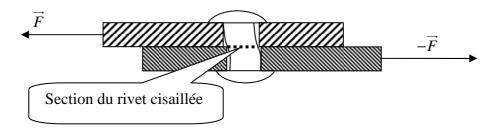
Dans une poutre travaillant en traction, pour une section droite orientée à 45° par rapport à la ligne moyenne, la contrainte n'est pas seulement normale, mais à une composante tangentielle:

$$\vec{\sigma}(M;\vec{n}) = \sigma_{nt}\vec{n} + \tau_{nt}\vec{t} = \tau_{nt}(\vec{n} + \vec{t})$$


1.2. Cisaillement simple

On dit qu'une section de poutre (de fibre moyenne \vec{x}) travaille en cisaillement simple lorsque

 $\vec{R}_{cohesion} = T\vec{t}$, avec $\vec{t} = \vec{y}$ ou \vec{z} , ce qui revient à dire (N = 0)


2. EXEMPLES

2.1. Axes d'articulation de biellettes.

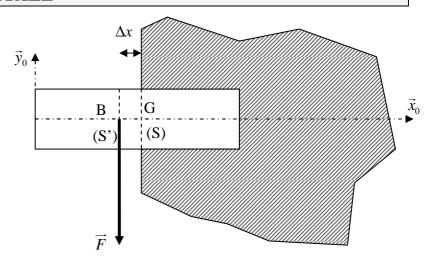
Page 1 **Emmanuel FARGES** © EduKlub S.A. Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

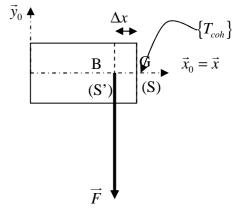
2.2. Assemblage de tôle par Rivet

3. ETUDE EXPERIMENTALE

On encastre une poutre droite de section rectangulaire et on lui applique un effort \vec{F} variable situé sur une section séparée de Δx très petit de la section encastrée (S).

En coupant au niveau de la section (S), et en conservant la partie gauche, (voir figure ci-contre), on écrit l'équilibre de la partie gauche :


$$\left\{ T_{cohesion} \right\} + \left\{ \begin{matrix} \overrightarrow{F} \\ \overrightarrow{GB} \wedge \overrightarrow{F} \end{matrix} \right\} = \left\{ \begin{matrix} \overrightarrow{0} \\ \overrightarrow{0} \end{matrix} \right\}$$


Le torseur de cohésion en G vaut donc :

$$\left\{T_{cohesion}\right\} = -\left\{\frac{\overrightarrow{F}}{GB \wedge F}\right\} = -\left\{\begin{matrix}0 & 0\\ -F & 0\\ 0 & \Delta xF\end{matrix}\right\} = \left\{\begin{matrix}0 & 0\\ F & 0\\ 0 & -\Delta xF\end{matrix}\right\}$$

En faisant tendre Δx vers 0, le moment de flexion

 $M_{f_z} = -\Delta x F$ est nul et on est alors bien dans un cas de cisaillement simple.

Résultats expérimentaux :

La section droite (S') glisse transversalement d'une valeur Δy par rapport à (S)

• Jusqu'à la valeur F_e , le glissement transversal est proportionnel à l'effort appliqué :

C'est la zone : **ELASTIQUE**

• Au-delà de cette valeur, on engendre des déformations permanentes :

C'est la zone : PLASTIQUE