

RESUME DU COURS DE MATHEMATIQUES

APPLICATIONS

DENOMBREMENT

ENSEMBLES

DEFINITION: Un ensemble est une collection d'objets appelés éléments de l'ensemble. Si x est un élément d'un ensemble E, on note : $x \in E$, sinon on note $x \notin E$.

L'ensemble qui n'a pas d'éléments est l'ensemble vide et se note \emptyset .

ENSEMBLE DES PARTIES D'UN ENSEMBLE

DEFINITION: On dit qu'un ensemble A est un sous-ensemble d'un ensemble E (ou une partie de E) si A est vide ou si tout élément de A appartient à E. On notera $A \subset E$.

Le symbole \exists veut dire " il existe " et le symbole / veut dire " tel que ".

Pour démontrer que 2 ensembles A et B de E sont égaux, on pourra montrer que $A \subset B$ et $B \subset A$.

DEFINITION: Etant donné un ensemble E, on appelle ensemble des parties de E l'ensemble dont les éléments sont les sous-ensembles (ou les parties) de E. Ce nouvel ensemble se note $\mathcal{P}(E)$.

Si x est un élément de E, la partie de E qui ne contient que l'élément x se notera $\{x\}$; c'est un sous ensemble à un seul élément, appelé singleton, c'est un élément de $\mathcal{P}(E)$, ce n'est pas un élément de E.

Exemple : Si $E = \{1, 2, 3\}$, alors

 $\mathcal{P}(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, E\}.$

OPERATIONS SUR LES ENSEMBLES

Remarque : les définitions suivantes sont valables pour des ensembles ou des sous-ensembles d'un ensemble.

• Union ou réunion : Soit A et B deux ensembles. L'union de A et de B est l'ensemble formé des éléments appartenant à A ou à B. Cet ensemble est noté $A \cup B$. On peut donc écrire $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$.

page 1 **Jean MALLET et Michel MITERNIQUE** © EDUKLUB SA Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des oeuvres autre que la consultation individuelle et privée sont interdites.

Remarque: Si $A \subset B$, alors $A \cup B = B$. Donc $\forall A \in \mathcal{P}(E)$, $A \cup E = E$ et $A \cup \emptyset = A$.

• Intersection : Soit A et B deux ensembles. L'intersection de A et de B est l'ensemble formé des éléments appartenant à A et à B. Cet ensemble est noté $A \cap B$. On peut donc écrire $A \cap B = \{x \mid x \in A \text{ et } x \in B\}$; ce sont les éléments communs à A et B.

Remarque: Si $A \subset B$, alors $A \cap B = A$. Donc $\forall A \in \mathcal{P}(E)$, $A \cap E = A$ et $A \cap \emptyset = \emptyset$.

• Complémentaire : Soit A une partie d'un ensemble E. On appelle complémentaire de A dans E la partie de E formée des éléments de E qui ne sont pas dans E. On le note \overline{A} ou $C_E(A)$

On peut donc écrire $\overline{A} = \{x \in E / x \notin A\}.$

• Différence : Soit A et B deux ensembles. La différence de A et de B est l'ensemble formé des éléments appartenant à A et n'appartenant pas à B. Cet ensemble est noté A - B.

On peut écrire A- $B=\{x\ /\ x\in A \text{ et } x\not\in B\}=A\cap \overline{B}, \text{ où } \cap \overline{B} \text{ représente le complémentaire de } B \text{ dans } A\cup B$

• Différence symétrique : Soit A et B deux ensembles. La différence symétrique de A et de B est l'ensemble formé des éléments appartenant à $A \cup B$ et n'appartenant pas à $A \cap B$. Cet ensemble est noté $A \Delta B$.

On peut écrire $A\Delta B = \{x \mid x \in A \cup B \text{ et } x \notin A \cap B\}$

 $A\Delta B=(A\cup B)\cap \overline{(A\cap B)}=(A\cap \overline{B})\cup (\overline{A}\cap B)$; il est facile alors de constater que $A\Delta B=B\Delta A$:

Quelques propriétés utiles

• L'union et l'intersection sont commutatives

Soit A et B deux ensembles, $\begin{cases} A \cup B &= B \cup A \\ A \cap B &= B \cap A \end{cases}$

• L'union et l'intersection sont associatives

Soit A, B, C trois ensembles, $\begin{cases} (A \cup B) \cup C &= A \cup (B \cup C) \\ (A \cap B) \cap C &= A \cap (B \cap C) \end{cases}$

• L'union est distributive par rapport à l'intersection et vice-versa :

Soit A, B, C trois ensembles, $\begin{cases} A \cup (B \cap C) &= (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) &= (A \cap B) \cup (A \cap C) \end{cases}$

• $A \subset B \iff \overline{B} \subset \overline{A}$.

Soit A_1, A_2, \ldots, A_n n ensembles.

$$\overline{A_1 \cap A_2 \cap \ldots \cap A_n} = \overline{A_1} \cup \overline{A_2} \cup \ldots \cup \overline{A_n}$$
$$\overline{A_1 \cup A_2 \cup \ldots \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap \ldots \cap \overline{A_n}$$

Remarque : On peut généraliser ces deux dernières propriétés à une famille quelconque (même infinie) d'ensembles.

DEFINITION: Produit cartésien: Soit E_1, E_2, \ldots, E_n n ensembles non vides, on appelle produit cartésien des ensembles E_1, E_2, \ldots, E_n l'ensemble noté $E_1 \times E_2 \times \ldots \times E_n$ formé des listes (x_1, x_2, \ldots, x_n) où $\forall i \in [\![1, n]\!]$, $x_i \in E_i$. On peut écrire page 2 **Jean MALLET et Michel MITERNIQUE** © EDUKLUB SA Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des oeuvres autre que la consultation individuelle et privée sont interdites.

 $E_1 \times E_2 \times \ldots \times E_n = \{(x_1, x_2, \ldots, x_n) / \forall i \in [1, n], \ x_i \in E_i\}.$

Remarque: Si pour tout $i \in [1, n], E_i = E$, alors $E_1 \times E_2 \times ... \times E_n$ se note E^n

FONCTIONS, APPLICATIONS

DEFINITION : Fonctions : Une fonction f d'un ensemble E dans un ensemble F (supposés tous les 2 non vides) associe, à tout élément de E au plus un élément de F.

Si l'élément x de E est associé à l'élément y de F, on écrit y = f(x): y s'appelle l'image par f de x, x s'appelle un antécédent de y par f.

Un élément de E a donc une image ou aucune image. Un élément de F n'a pas forcément d'antécédent par f, mais il peut aussi en avoir plusieurs.

Terminologie : L'ensemble des éléments de E qui ont une image par f s'appelle l'ensemble de définition de f. On le note D_f .

L'ensemble des éléments de F qui ont un antécédent par f s'appelle image de f et se note f(E) ou $\mathrm{Im}(f)$.

DEFINITION : Applications : Une application d'un ensemble E dans un ensemble F est une fonction de E dans F dont l'ensemble de définition est E. Autrement dit, tout élément de E a une image (et une seule).

DEFINITION : Image d'une partie de E : Soit A une partie de E et f une application de E dans F. On appelle image de A par f l'ensemble des images par f des éléments de A. On le note f(A).

$$f(A) = \{ y \in F \ / \ \exists x \in A \ / \ y = f(x) \} = \{ f(x) \ / \ x \in A \}.$$

Donc $y \in f(A) \iff \exists x \in A / y = f(x)$.

DEFINITION : Image réciproque : Soit $B \subset F$ et f une application de E dans F. On appelle image réciproque de B par f l'ensemble des antécédents par f des éléments de B. On le note $f^{-1} < B >$.

$$f^{-1} < B > = \{x \in E \ / \ f(x) \in B\} \ ; \ x \in f^{-1} < B > \iff f(x) \in B.$$

COMPOSEE D'APPLICATIONS: Soit E, F, G trois ensembles non vides (qui ne sont pas forcément distincts), f une application de E dans F et g une application de F dans G.

DEFINITION: On appelle composée de f par g et on note $g \circ f$ l'application de E dans G définie par : $\forall x \in E, \ (g \circ f)(x) = g(f(x)).$

Associativité:

• E, F, G, H sont 4 ensembles non vides, f, g, h 3 applications respectivement de E dans F, de F dans G, de G dans H.

 $(h \circ (g \circ f)) = ((h \circ g) \circ f)$. On dit que la composition des applications est associative.

APPLICATIONS INJECTIVES, SURJECTIVES,

BIJECTIVES

Applications injectives : Soit f une application d'un ensemble non vide E dans un ensemble non vide F.

DEFINITION : On dit que f est injective si 2 éléments distincts de E ont toujours 2 images distinctes par f.

page 3 Jean MALLET et Michel MITERNIQUE © EDUKLUB SA Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des oeuvres autre que la consultation individuelle et privée sont interdites.

4 Ensembles, applications

 $(f \text{ est injective}) \iff (\forall (x,y) \in E^2, x \neq y \implies f(x) \neq f(y))$ ou $(f \text{ est injective}) \iff (\forall (x,y) \in E^2, f(x) = f(y) \implies x = y)$

Pour f injective, on dira aussi que f est une injection.

Remarque: dire que f n'est pas injective signifie qu'il existent 2 éléments distincts de E (au moins) qui ont la même image par f

 $\underline{PROPOSITION}$: La composée d'un nombre fini d'injections est une injection

Applications surjectives : Soit f une application d'un ensemble E dans un ensemble F.

DEFINITION : On dit que f est surjective (sur F) si et seulement si tout élément de F admet (au moins) un antécédent dans E.

Autrement dit : $(\forall y \in F, \exists x \in E / y = f(x))$ ou f(E) = F.

Remarque: f n'est pas surjective si $\exists y \in F / \forall x \in E, f(x) \neq y$.

Pour f surjective, on dira aussi f est une surjection de E sur F.

<u>PROPOSITION</u>: La composée d'un nombre fini de surjections est une surjection

Applications bijectives : Soit f une application d'un ensemble E dans un ensemble F. On dit que f est bijective (ou est une bijection) de E sur F si et seulement si $\forall y \in F$, $\exists ! x \in E \ / \ y = f(x)$.

Autrement dit, tout élément de F admet un unique antécédent dans E Le symbole $\exists!$ veut dire " il existe un unique ".

Il est équivalent de dire f bijective et "f est injective et surjective".

 $\underline{PROPOSITION}$: La composée d'un nombre fini de bijections est une bijection

Application réciproque d'une bijection : Soit f une bijection de E sur F. A tout élément g de F, on associe son unique antécédent $g \in E$. On définit ainsi une application $g \longmapsto g$, de F dans E.

DEFINITION: L'application $y \in F \mapsto x \in E / y = f(x)$, s'appelle l'application réciproque de f. On la note f^{-1} ; elle pourrait prendre le nom d'application antécédent, car elle associe à y son antécédent.

Donc, écrire $x = f^{-1}(y)$ équivaut à y = f(x).

 $\underline{\bf PROPOSITION}$: Si f est une bijection de E sur F, alors f^{-1} est une bijection de F sur E.

Remarque: $f \circ f^{-1} = \operatorname{Id}_F$ et $f^{-1} \circ f = \operatorname{Id}_E$.

DEFINITION : S'il existe une bijection entre 2 ensembles E et F, on dit que E est F sont équipotents.

page 4 **Jean MALLET et Michel MITERNIQUE** © EDUKLUB SA Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des oeuvres autre que la consultation individuelle et privée sont interdites.