

EXERCICES DE MATHEMATIQUES

ALGEBRE LINEAIRE

ENONCE DE L'EXERCICE

ENONCE:

ENONCE-22

Soit E un espace vectoriel réel et f un endomorphisme de E tel que $f \circ f = -id_E$.

- 1) Montrer que f est un automorphisme de E.
- 2) Soit $p \in [2, +\infty[$. On considère une famille de p vecteurs de E, (e_1, e_2, \ldots, e_p) . On suppose que la famille $(e_1, \ldots, e_p, f(e_1), \ldots, f(e_{p-1}))$ est libre.
- a) Montrer que la famille $f(e_1), \ldots, f(e_{p-1}), f(e_p)$ est libre.
- b) Montrer qu'alors la famille $(e_1, \ldots, e_p, f(e_1), \ldots, f(e_{p-1}), f(e_p))$ est libre.

Ind: on pourra considérer une combinaison linéaire nulle des vecteurs $e_1, \ldots, e_p, f(e_1), \ldots, f(e_{p-1}), f(e_p)$ et envisager le cas où le coefficient de $f(e_p)$ est nul, puis celui où il est non nul.

- 3) On suppose ici que la dimension de E vaut 6.
- a) Montrer qu'il existe un entier p>0 et p vecteurs (e_1,\ldots,e_p) de E tels que la famille $(e_1,\ldots,e_p,f(e_1),\ldots,f(e_p))$ soit une base de E, notée B.
- b) Quelle est la matrice M de f dans cette base B?
- c) Déterminer les matrices $A \in \mathcal{M}_6(\mathbb{R})$ telles que $A^2 = -I_6$.

INDICATIONS DE SOLUTION

Dans la question $\mathbf{2}-\mathbf{b}$), dans le cas où le coefficient b_p de $f(e_p)$ est non nul, appliquer f à la combinaison linéaire, puis faire disparaître e_p de cette dernière équation .