

EXERCICES DE MATHEMATIQUES

ALGEBRE LINEAIRE

ENONCE DE L'EXERCICE

ENONCE:

ENONCE-20

Soit $A = (a_{i,j})$ une matrice appartenant à $\mathcal{M}_n(\mathbb{R})$.

On appelle trace de A le nombre $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{i,i}$.

1) a) Montrer que

$$\forall (A, B) \in \left(\mathcal{M}_n(\mathbb{R})\right)^2, \ \operatorname{tr}(AB) = \operatorname{tr}(BA), \ \operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B) \ \operatorname{et}$$
$$\forall \lambda \in \mathbb{R}, \ \operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A).$$

- b) En déduire que deux matrices semblables ont même trace.
- **2)** On suppose n=2. Soit $(u,v)\in (\mathcal{L}(\mathbb{R}^2))^2$ vérifiant :

$$u \circ v - v \circ u = u. \tag{*}$$

- a) Montrer que $\exists \lambda \in \mathbb{R} / u \circ u = \lambda \operatorname{Id}_{\mathbb{R}^n}$; établir que $\lambda = 0$.
- b) On suppose de plus que $u \neq 0$. Montrer que :
- $-\dim \operatorname{Ker} u = 1.$
- Ker u est stable par v.
- -v admet au moins une valeur propre réelle.