

Énoncés des exercices

Exercice 1 [Corrigé]

Soit $(a_n)_{n\geq 0}$ une suite de nombres réels ou complexes.

On pose $b_0 = 1$ et $b_n = \prod_{k=0}^{n-1} (1 - a_k)$ pour $n \ge 1$. Montrer que $b_{n+1} = 1 - \sum_{k=0}^{n} a_k b_k$ pour tout n.

EXERCICES DE BON NIVEAU SUR LE RAISONNEMENT PAR RÉCURRENCE

Exercice 2 [Corrigé]

On définit une suite $(u_n)_{n\geq 1}$ par $u_1=1$ et $u_{n+1}=1+\frac{n}{u_n}$ pour tout $n\geq 1$.

Montrer que $\sqrt{n} < u_n < \sqrt{n} + 1$ pour tout $n \ge 2$.

Exercice 3 [Corrigé]

On se donne n réels x_1, x_2, \ldots, x_n dans [0, 1]. On pose $s(x_1, x_2, \ldots, x_n) = \sum_{1 \le i < j \le n} |x_j - x_i|$. Cette quantité est donc la somme des distances entre les différents x_i .

- 1. Montrer qu'on peut choisir x_1, x_2, \ldots, x_n de telle sorte que :
 - Si *n* est pair (n = 2m) alors $s(x_1, x_2, ..., x_n) = m^2$.
 - Si *n* est impair (n = 2m + 1) alors $s(x_1, x_2, ..., x_n) = m^2 + m$.
- 2. Montrer que les valeurs ainsi obtenues sont en fait des maximums.

Exercice 4 [Corrigé]

Pour tout x de \mathbb{R} on pose $x^{(0)} = 1$ et $x^{(n)} = x(x-1)\cdots(x-n+1) = \prod_{k=0}^{n-1}(x-k)$. Montrer l'égalité $(x+y)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} x^{(k)} y^{(n-k)}$ pour tous réels x, y et tout n de \mathbb{N} .

Exercice 5 [Corrigé]

Étudier les suites $(u_n)_{n\geq 0}$ définies par $0 < u_1 < u_0$ et $u_{n+2} = \frac{u_n u_{n+1}}{2u_n - u_{n+1}}$ pour tout n.

Exercice 6 [Corrigé]

On se donne un réel a de]0,1[et pour tout $n \ge 1$ on pose $u_n = \sum_{k=1}^n \frac{a^k}{(1-a^k)(1-a^{k+1})}$. Simplifier l'expression u_n et en déduire $\lim_{n\to\infty} u_n$.

Exercice 7 [Corrigé]

On une suite $(x_n)_{n\geq 0}$ de nombres réels.

Pour tout $n \ge 1$, on note $S_n = \sum \cos(x_0 \pm x_1 \pm x_2 \pm \cdots \pm x_n)$, où la somme est étendue à toutes les combinaisons possibles de signes devant x_1, x_2, \dots, x_n (et il y en a 2^n .)

Ainsi
$$\begin{cases} S_1 = \cos(x_0 + x_1) + \cos(x_0 - x_1) \\ S_2 = \cos(x_0 + x_1 + x_2) + \cos(x_0 + x_1 - x_2) + \cos(x_0 - x_1 + x_2) + \cos(x_0 - x_1 - x_2) \end{cases}$$

Donner une expression factorisée de S_n

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

Corrigé de l'exercice 1 [Retour à l'énoncé]

La propriété est vraie pour n=0 car elle se réduit à $b_1=1-a_0$.

Supposons qu'elle soit vrai au rang n_1 , avec $n \ge 1$, c'est-à-dire que $b_n = 1 - \sum_{k=0}^{n-1} a_k b_k$.

EXERCICES DE BON NIVEAU SUR LE RAISONNEMENT PAR RÉCURRENCE

Alors
$$b_{n+1} = \prod_{k=0}^{n} (1 - a_k) = (1 - a_n) \prod_{k=0}^{n-1} (1 - a_k) = (1 - a_n) b_n = b_n - a_n b_n$$

$$= 1 - \sum_{k=0}^{n-1} a_k b_k - a_n b_n = 1 - \sum_{k=0}^{n} a_k b_k \text{ ce qui prouve la propriété au rang } n$$
et achève la récurrence.

CORRIGÉ DE L'EXERCICE 2 [Retour à l'énoncé]

La propriété est vraie si n = 2 car $u_2 = 2$ donc $\sqrt{2} < u_2 < 1 + \sqrt{2}$.

Supposons que la double inégalité $\sqrt{n} < u_n < 1 + \sqrt{n}$ soit vraie pour un certain $n \ge 2$.

Puisque
$$u_n > \sqrt{n}$$
, on a $u_{n+1} = 1 + \frac{n}{u_n} < 1 + \sqrt{n} < 1 + \sqrt{n+1}$.

L'inégalité $\sqrt{n+1} < u_{n+1}$ équivaut à $\sqrt{n+1} < 1 + \frac{n}{u_n}$ c'est-à-dire $u_n < \frac{n}{\sqrt{n+1}-1}$ ou encore

à l'inégalité $u_n < \sqrt{n+1} + 1$ (par utilisation de la quantité conjuguée.)

Mais cette dernière est une conséquence immédiate de l'hypothèse $u_n < \sqrt{n} + 1$.

On a ainsi prouvé la propriété au rang n+1, ce qui achève la récurrence.

Corrigé de l'exercice 3 [Retour à l'énoncé]

- 1. Si n=2m, on place x_1, x_2, \ldots, x_m en 0 et $x_{m+1}, x_{m+2}, \ldots, x_{2m}$ en 1. Il y a m^2 distances $|x_j - x_i|$ égales à 1, avec $1 \le i \le m$ et $m+1 \le j \le 2m$. Toutes les autres distances $|x_j - x_i|$ sont nulles. On a bien $s(x_1, x_2, \ldots, x_{2m}) = m^2$.
 - Si n = 2m + 1, on place x_1, x_2, \ldots, x_m en 0 et $x_{m+1}, x_{m+2}, \ldots, x_{2m+1}$ en 1. Il y a m(m+1) distances $|x_j - x_i|$ égales à 1, avec $1 \le i \le m$ et $m+1 \le j \le 2m+1$. Toutes les autres distances $|x_j - x_i|$ sont nulles. On a bien $s(x_1, x_2, \ldots, x_{2m}) = m^2 + m$.
- 2. Si n=2 (n=2m où m=1) $s(x_1,x_2)=|x_2-x_1|\leq 1$: $m^2=1$ est bien un maximum.
 - Si n = 3 (n = 2m + 1 où n = 1), $s(x_1, x_2, x_3) = |x_2 x_1| + |x_3 x_1| + |x_3 x_2|$. On peut bien supposer que $x_1 \le x_2 \le x_3$ puisque x_1, x_2, x_3 jouent le même rôle. Alors $s(x_1, x_2, x_3) = (x_2 - x_1) + (x_3 - x_1) + (x_3 - x_2) = 2(x_3 - x_1) \le 2$.

Afors $s(x_1, x_2, x_3) = (x_2 - x_1) + (x_3 - x_1) + (x_3 - x_2) = 2(x_3 - x_1) \le 2$

La valeur $m^2 + m = 2$ est donc bien un maximum.

– On suppose la propriété vraie au rang $n \geq 2$ et on se donne les n+2 réels x_1, \ldots, x_{n+2} . Comme ils jouent le même rôle, on peut supposer $x_1 \leq x_2 \leq \cdots \leq x_{n+1} \leq x_{n+2}$. Dans ces conditions, en isolant les points x_1 et x_{n+2} :

$$s(x_1, \dots, x_{n+2}) = x_{n+2} - x_1 + \sum_{j=2}^{n+1} (x_j - x_0) + \sum_{j=2}^{n+1} (x_{n+2} - x_j) + \sum_{2 \le i < j \le n+1} (x_j - x_i).$$

Ainsi $s(x_1, \dots, x_{n+2}) = (n+1)(x_{n+2} - x_0) + s(x_2, \dots, x_{n+1}) \le n+1+s(x_2, \dots, x_{n+1}).$

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.