

Quadriques. III

III.1 Définition.

Définition1.

Définition Quadrique

Soit P l'application de \mathbb{R}^3 dans \mathbb{R} de la forme;

$$P(x,y,z) = ax^{2} + by^{2} + +cz^{2} + 2dyz + 2ezx + 2fxy + 2gx + 2hy + 2kz + l$$

On appelle quadrique, la surface de \mathbb{R}^3 dont une équation cartésienne est de la forme P(x,y,z) = 0.

Remarque.

On pose $Q(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2ezx + 2fxy$, Q est un polynôme homogène du second degré , c'est à dire que Q est une fonction polynomiale du second degré en x,y et z, de plus il est homogène de degré 2 car:

$$\forall t \in \mathbb{R}, \ \forall (x,y,z) \in \mathbb{R}^3, \ Q(tx,ty,tz) = t^2 Q(x,y,z)$$

On pose F(x,y,z) = 2gx + 2hy + 2kz, F est une forme linéaire sur \mathbb{R}^3 , la matrice L de Fdans la base canonique de $\mathcal{L}(\mathbb{R}^3,\mathbb{R})$ est $L = \begin{pmatrix} g \\ h \\ k \end{pmatrix}$

si
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 alors $F(x,y,z) = 2^t LX$

On note
$$M = \begin{pmatrix} a & f & e \\ d & b & d \\ e & d & c \end{pmatrix}$$
, on a ${}^{t}XMX = Q\left(x,y,z\right)$.

Donc la quadrique a pour équation

$${}^{t}XMX + 2{}^{t}LX + l = 0$$

III.2 Plan tangent.

Le vecteur $\overrightarrow{gradP}(x_0, y_0, z_0)$ a pour coordonnées $\begin{pmatrix} \frac{\partial P}{\partial x}(x_0, y_0, z_0) \\ \frac{\partial P}{\partial y}(x_0, y_0, z_0) \\ \frac{\partial P}{\partial z}(x_0, y_0, z_0) \end{pmatrix}$

©EduKlub S.A. Page 23 Yann Blanchard www.klubprepa.net

Partie III: Quadriques.

donc

$$\overrightarrow{gradP}(x_0, y_0, z_0) \begin{pmatrix} 2ax_0 + 2fy_0 + 2ez_0 + 2g \\ 2fx_0 + 2by_0 + 2dz_0 + 2h \\ 2ex_0 + 2dy_0 + 2cz_0 + 2k \end{pmatrix}$$

On note toujours $M = \begin{pmatrix} a & f & e \\ d & b & d \\ e & d & c \end{pmatrix}$, le vecteur $\overrightarrow{gradP}(x_0, y_0, z_0)$ a pour coordonnées $2MX_0 + C$

2L

avec
$$X_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$
.

 M_0 est régulier si $MX_0 + L \neq 0$.

Le plan tangent en un point régulier est :

$$(x - x_0) \frac{\partial P}{\partial x} (x_0, y_0, z_0) + (y - y_0) \frac{\partial P}{\partial y} (x_0, y_0, z_0) + (z - z_0) \frac{\partial P}{\partial z} (x_0, y_0, z_0) = 0$$

Sous forme matricielle, $^t\left(2MX_0+2L\right)(X-X_0)=0$, c'est à dire $2^tX_0MX-2^tX_0MX_0+^t2LX-^t2LX_0=0$

Or ${}^tX_0MX_0+2{}^tLX_0+l=0$, on en déduit que le plan tangent a pour équation en un point régulier,

$${}^{t}X_{0}MX + {}^{t}L(X + X_{0}) + l = 0$$

D'où la "règle" de dédoublement des termes, on remplace les carrés comme x^2 par xx_0 , xz + xz est remplacé par $xz_0 + x_0z$ et la somme x + x par $x + x_0$.

Exemple:
$$\sum : \frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} + 4xz + 4x + 8y + 10z = 0$$

Le plan tangent en M_0 régulier a pour équation;

$$\frac{xx_0}{4} + \frac{yy_0}{9} + \frac{zz_0}{16} + 2(xz_0 + x_0z) + 2(x + x_0) + 4(y + y_0) + 5(z + z_0) = 0.$$

III.3 Élimination des termes rectangles. (changement de base)

Parmi les termes du second degré, on cherche à conserver uniquement les carrés, pour pouvoir caractériser les quadriques par leurs équations réduites.

La méthode consiste à changer de repère orthonormé, une méthode parmi d'autres (toujours regarder avant, si l'évidence n'est pas devant nous) consiste à diagonaliser la matrice symétrique réelle M.

On sait qu'il existe une matrice U orthogonale et une matrice $D=\begin{pmatrix}\lambda_1&0&0\\0&\lambda_2&0\\0&0&\lambda_3\end{pmatrix}$ telles que $U^{-1}MU=D$ soit

Page 24 Yann Blanchard www.klubprepa.net ©EduKlub S.A.

Partie III: Quadriques.

 $M = UDU^{-1}$ ou encore $M = UD^{t}U$.

On a
$${}^tXMX = {}^tXUD\,{}^tUX = {}^t({}^tUX)\,D\,({}^tUX)$$
 , on pose $Y = {}^tUX = U^{-1}X$.

On sait que si $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ est une base orthonormée de vecteurs propres de la matrice M, la matrice Y des coordonnées d'un vecteur dans la base $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ est égale à $U^{-1}X$ où X est la matrice des coordonnées de ce vecteur dans la base canonique $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ et U est la matrice de passage de la base $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ à la base $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$. Les nouveaux axes du repère $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ sont appelés axes principaux de la quadrique.

On note
$$Y = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$
,

$$Q(x,y,z) = \lambda_1 x'^2 + \lambda_2 y'^2 + \lambda_3 z'^2$$

L'équation de la quadrique dans le nouveau repère $\mathcal{R}' = (O, \overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ est ${}^tYDY + {}^tLUY + l = 0$

Soit
$${}^tYDY + {}^tL'Y + l = 0$$
 avec $L' = {}^tUL$.

III.4 Quadriques à centre.(changement d'origine)

On change l'origine du repère, on note $\mathcal{R} = (O, \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ et $\mathcal{R}' = (O', \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$, X la matrice des coordonnées dans \mathcal{R} , X' la matrice es coordonnées dans \mathcal{R}' , $X_{O'}$ la matrice des coordonnées dans \mathcal{R} de O' dans le repère \mathcal{R} .

On a
$$X' = X - X_{O'}$$
 ou encore $X = X' + X_{O'}$.

On remplace dans l'équation de la quadrique; $^{t}\left(X'+X_{O'}\right)M\left(X'+X_{O'}\right)+2^{t}L\left(X'+X_{O'}\right)+l=0$.

On développe et on obtient :

$${}^{t}X'MX' + 2({}^{t}X_{O'}M + {}^{t}L)X' + ({}^{t}X_{O'}MX_{O'} + 2{}^{t}LX_{O'} + l) = 0$$

On remarque que $P(x_{O'}, y_{O'}, z_{O'}) = ({}^tX_{0'}MX_{0'} + 2{}^tLX_{O'} + l)$. On pose $L' = MX_{O'} + L$ on a:

$${}^{t}X'MX' + 2{}^{t}L'X' + P(x_{O'}, y_{O'}, z_{O'}) = 0$$

Définition Centre

On dit que O' est un centre pour la quadrique \sum si L' = 0, l'équation dans \mathcal{R}' est ${}^tX'MX' + P(x_{O'}, y_{O'}, z_{O'}) = 0$.

Page 25 Yann Blanchard www.klubprepa.net ©EduKlub S.A.

- Existence.

Si M est inversible alors il existe un centre .

Preuve: L'=0 si et seulement si $MX_{O'}+L=0$, donc $MX_{O'}=-L$, ceci équivaut à $X_{O'} = -M^{-1}L.$

– Détermination.

On a vu que le vecteur $\overrightarrow{gradP}(x_0,y_0,z_0)$ a pour coordonnées $2MX_0+2L$, donc L'=0 si et seulement si $\overrightarrow{qradP}(x_{O'}, y_{O'}, z_{O'}) = \overrightarrow{0}$

Les coordonnées $(x_{O'}, y_{O'}, z_{O'})$ du centre O' sont solutions de $\overrightarrow{gradP}(x_{O'}, y_{O'}, z_{O'}) = \overrightarrow{0}$.

Équation réduite d'une quadrique. III.5

Classification

- Rang de M égal à 3.

La quadrique \sum est une quadrique à centre O', dans le repère $\mathcal{R}' = \left(O', \overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K}\right)$ où $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ sont les directions principales de la conique, \sum admet pour équation: $\lambda_1 x'^2$ + $\lambda_2 y'^2 + \lambda_3 z'^2 + l' = 0$ avec $l' = P(x_{O'}, y_{O'}, z_{O'})$. On remarque que si deux valeurs propres sont égales alors la quadrique est de révolution.

 \diamondsuit Supposons $l' \neq 0$.

On obtient quatre type de quadriques suivant le signe des valeurs propres de M.

type I)
$$\frac{x'^2}{a^2} + \frac{y'^2}{b^2} + \frac{z'^2}{c^2} = 1$$
 Ellipsoïde.

$$\frac{x'^2}{a^2} + \frac{y'^2}{b^2} + \frac{z'^2}{c^2} = -1$$
 Vide.

©EduKlub S.A. Yann Blanchard www.klubprepa.net