

TD: Réponse d'un premier ordre

TD N°2 : Réponse d'un premier ordre (d'après banque PT 97)

Hypothèses de travail:

Dans ce qui suit, on se place dans l'hypothèses des systèmes linéaires continus invariants

Principales notations utilisées :

K : Différents gains

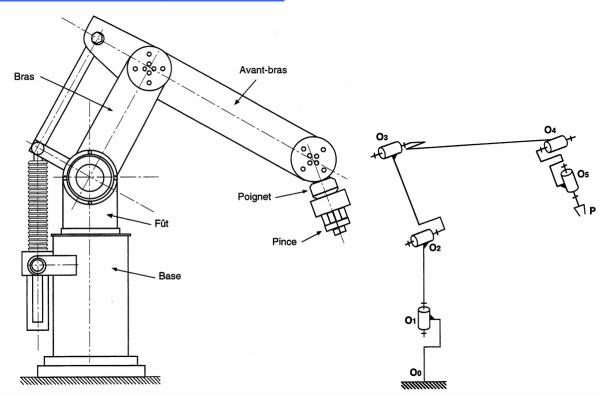
 $J_m, J_R, J_{c\acute{e}a}$: Inerties du moteur, du réducteur et de la charge.

 J_{ma} : Inertie globale équivalente sur l'arbre moteur.

 C_m : Couple électromagnétique délivré par le moteur.

 C_r : Couple résistant (couple de frottements secs).

 C_{re} : Couple résistant ramené sur l'arbre moteur.


 R, K_e, K_t : Constantes électriques du moteur (résistance de l'induit, constante de force

contre-électromotrice et constante de couple)

N : Rapport de réduction

 \mathbf{w}_{m} , \mathbf{J}_{m} : Vitesse et position angulaire du moteur \mathbf{w}_{c} , \mathbf{J}_{c} : Vitesse et position angulaire de la charge

Modèle de la motorisation du fût du robot :

Page 1 Emmanuel FARGES © EduKlub S.A. Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

Systèmes linéaires continus invariants

TD: Réponse d'un premier ordre

Le moteur retenu à l'issue de l'étude dynamique du robot est un servo-moteur PARVEX de type AXEM-MC 19P à induit plat qui présente l'avantage de posséder une très faible inertie. Il s'agit d'un moteur à courant continu à excitation indépendante commandé par l'induit.

Le comportement électromécanique de ce type de moteur, dans l'hypothèse où l'inductance est négligeable, est donné par les équations suivantes :

$$u(t) = Ri(t) + e(t) \tag{1}$$

$$C_{m}(t) = K_{t}i(t) \tag{2}$$

$$e(t) = K_e \mathbf{w}_m(t) \tag{3}$$

$$J_m \frac{d\mathbf{w}_m(t)}{dt} = C_m(t) \tag{4}$$

Modèle du moteur seul

On se propose, tout d'abord, d'étudier le modèle du moteur à vide, c'est-à-dire, du moteur seul : dans un premier temps par le modèle théorique et dans un second temps par une étude expérimentale.

Question 1:

Après avoir appliqué la transformation de Laplace à chacune des équations ci-dessus [(1) à (4)] sous l'hypothèse de conditions initiales toutes nulles, calculer la transformée $\Omega_m(p)$ de la vitesse de rotation $\mathbf{w}_m(t)$ en fonction de la transformée U(p) de la tension de commande u(t).

Question 2:

Mettre le résultat sous la forme: $\Omega_m(p) = M(p) U(p)$ avec $M(p) = \frac{K_m}{1 + T_m p}$ en précisant K_m et T_m .

La documentation technique du constructeur fournit les renseignements suivants :

$$K_e = 25.5 \frac{V}{1000 \text{tr}/\text{min}}$$
; $K_t = 0.244 Nm/A$ et $R = 0.46 \Omega$

Afin de valider le modèle construit à la question 2 et de déterminer l'inertie du rotor du moteur, on effectue une étude expérimentale sous forme de l'observation de la réponse indicielle du moteur seul soumis à un échelon de tension $U(t) = U_0 u(t) (u(t))$ fonction de Heavyside: échelon unité) avec $U_0 = 50 \ V$. Le document réponse donne le résultat de cet essai.