

Racines carrées dans $\mathcal{L}_{\mathbb{C}}\left(E\right)$ lorsque la dimension de E est finie

Énoncé

Racines carrées dans $\mathcal{L}_{\mathbb{C}}\left(E\right)$ lorsque la dimension de E est finie

ENSI M 1988, (Math 2)

Notations:

Dans tout le problème n et N sont deux entiers naturels non nuls.

- E est l'espace vectoriel \mathbb{C}^N .
- $\mathcal{L}(E)$ est l'algèbre des endomorphismes de l'espace vectoriel E. On note O l'endomorphisme nul et e l'endomorphisme identité de E.
- $\mathbb{C}[X]$ est l'algèbre des polynômes à coefficients dans \mathbb{C} . $\mathbb{C}_n[X]$ est le sous-espace vectoriel de $\mathbb{C}[X]$ constitué des polynômes de degré au plus n.
- Étant donnés $f \in \mathcal{L}(E)$ et $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}_n[X]$, on désigne par
 - \diamond Sp (f) l'ensemble des valeurs propres de f,
 - $\diamond \mathcal{R}(f)$ l'ensemble des "racines carrées de f" dans $\mathcal{L}(E) : \mathcal{R}(f) = \{g \in \mathcal{L}(E) \mid g^2 = f\},$
 - $\Leftrightarrow \widetilde{P}(f)$ l'endomorphisme de E défini par $\widetilde{P}(f) = \sum_{k=0}^{n} a_k f^k$ (avec la convention $f^0 = e$).
- F et G étant deux sous-espaces vectoriels supplémentaires de E, on appelle projecteur sur F parallèlement à G, l'endomorphisme $p_{F,G}$ de E tel que : $\forall (x, y) \in F \times G$, $p_{F,G}(x+y) = x$.
- \mathbb{N}_n est le sous-ensemble $\{1, 2, ..., n\}$ de \mathbb{N}^* .

Partie I

Soit f un endomorphisme de E. On suppose qu'il existe $(a, b) \in \mathbb{C}^2$ et deux endomorphismes non nuls p et q tels que

$$a \neq b$$
 et
$$\begin{cases} p + q = e \\ ap + bq = f \end{cases}$$

- [I] [S] I.1) Calculer (f ae)(f be). En déduire que f est diagonalisable.
- [I] [S] I.2) a) Établir que pq = qp = O, $p^2 = p$, $q^2 = q$.
 - **b)** Montrer que $\operatorname{Sp}(f) = \{a, b\}$.
 - c) On suppose que $ab \neq 0$. Montrer que f est bijective et que

$$\forall m \in \mathbb{Z}, \quad f^m = a^m p + b^m q.$$

[I] [S] I.3) Montrer que p est le projecteur sur Ker(f - ae) parallèlement à Ker(f - be) et que q est le projecteur sur Ker(f - be) parallèlement à Ker(f - ae).

Page 1 Michel Lepez www.klubprepa.net ©EduKlub S.A.

Problèmes de Mathématiques

Racines carrées dans $\mathcal{L}_{\mathbb{C}}\left(E\right)$ lorsque la dimension de E est finie

Énoncé

[I] [S] I.4) On note F le sous-espace de $\mathcal{L}(E)$ engendré par p et q.

- a) Montrer que F est une sous-algèbre de $\mathcal{L}(E)$ et en donner la dimension.
- b) Déterminer les projecteurs qui sont éléments de F.
- c) Déterminer $\mathcal{R}(f) \cap F$.

[I] [S] I.5) Exemple:
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
 et $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- a) Calculer J^m pour $m \in \mathbb{N}$. En déduire A^m en fonction de I_3 et J.
- **b)** Montrer qu'il existe deux couples $(a, b) \in \mathbb{C}^2$ et $(B, C) \in \mathcal{M}_3(\mathbb{C})^2$ tels que $\forall m \in \mathbb{N}, \quad A^m = a^m B + b^m C$.
- c) Déterminer en fonction de B et C quatre matrices M telles que $M^2 = A$.

Partie II

Soit (p_1, p_2, \ldots, p_n) une famille de n endomorphismes non nuls de E, (x_1, x_2, \ldots, x_n) une famille de n nombres complexes dintincts, et f un endomorphisme de E tel que, pour tout entier naturel m, $f^m = \sum_{k=1}^n x_k^m p_k$.

[I] [S] II.1) Montrer que
$$\forall P \in \mathbb{C}[X], \quad \widetilde{P}(f) = \sum_{k=1}^{n} \widetilde{P}(x_k) p_k.$$

[I] [S] II.2) On pose
$$\Pi = \prod_{k=1}^{n} (X - x_k)$$
 et pour tout $l \in \mathbb{N}_n$, $\Pi_l = \prod_{\substack{k=1 \ k \neq l}}^{n} (X - x_k)$ et $L_l = \frac{\Pi_l}{\widetilde{\Pi}_l(x_l)}$.

- a) Calculer $\widetilde{\Pi}(f)$. Qu'en déduit-on pour f?
- **b)** Montrer que $\forall k \in \mathbb{N}_n$, $p_k = \widetilde{L}_k(f)$. Vérifier que $\forall (k, l) \in \mathbb{N}_n^2$, $p_k p_l = \delta_{kl} p_k$ où δ_{kl} est le symbole de Kronecker.
- c) Montrer que $\operatorname{Sp}(f) = \{x_k \mid k \in \mathbb{N}_n\}$.

[I] [S] II.3) Montrer que pour tout
$$k \in \mathbb{N}_n$$
, p_k est le projecteur sur $\operatorname{Ker}(f - x_k e)$ parallèlement à $V_k = \bigoplus_{l=1}^n \operatorname{Ker}(f - x_l e)$.

[I] [S] II.4) On désigne par
$$F$$
 le sous-espace de $\mathcal{L}(E)$ engendré par la famille (p_1, p_2, \ldots, p_n) .

- a) Quelle est la dimension de F?
- **b)** Déterminer le cardinal de $\mathcal{R}(f) \cap F$.
- c) Quels sont les projecteurs qui sont éléments de F? (On précisera le nombre de ces projecteurs ainsi que leurs éléments caractéristiques)

Page 2 Michel Lepez www.klubprepa.net ©EduKlub S.A.

Problèmes de Mathématiques

Racines carrées dans $\mathcal{L}_{\mathbb{C}}\left(E\right)$ lorsque la dimension de E est finie

Énoncé

- [I] [S] II.5) On suppose ici que n = N.
 - a) Montrer que $\forall g \in \mathcal{L}(E)$, $gf = fg \iff g \in F$.
 - **b)** Quel est le cardinal de $\mathcal{R}(f)$?
- [I] [S] II.6) Soit h un endomorphisme diagonalisable de E tel que $\operatorname{Sp}(h) = \{x_k \mid k \in \mathbb{N}_n\}$. Montrer qu'il existe une famille (q_1, q_2, \ldots, q_n) de n endomorphismes non nuls de E, tels que $\forall m \in \mathbb{N}, \quad f^m = \sum_{k=1}^n x_k^m p_k$.

[I] [S] II.7) Exemple: Soit
$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$
.

- a) Déterminer les valeurs propres x_1, x_2, x_3 de A.
- **b)** Calculer L_1 , L_2 , L_3 et expliciter les matrices $P_1 = \widetilde{L}_1(A)$, $P_2 = \widetilde{L}_2(A)$ et $P_3 = \widetilde{L}_3(A)$.
- c) Déterminer explicitement les éléments de $\mathcal{R}(A)$.

Partie III

Soit u un endomorphisme de E tel que $u^n = O$ et $u^{n-1} \neq O$.

- [I] [S] III.1) a) Montrer qu'il existe $x \in E$ tel que famille $(u^{k-1}(x))_{k \in \mathbb{N}_n}$ soit libre.
 - **b)** Établir que $\forall P \in \mathbb{C}[X], \widetilde{P}(u) = O \iff X^n$ divise P.
 - c) Montrer que $\mathcal{R}(u) \neq \emptyset \Longrightarrow n \leqslant \frac{N+1}{2}$.
- [I] [S] III.2) a) Déterminer une suite $(a_n)_{n\in\mathbb{N}}$ de nombres réels telle que pour tout réel $x\in]-1, 1[$,

$$\sqrt{1+x} = \sum_{k=0}^{+\infty} a_k x^k \,.$$

- **b)** Soit $P_n = \sum_{k=0}^{n-1} a_k x^k$. Montrer que X^n divise $P_n^2 X 1$.
- [I] [S] III.3) On prend dans toute la suite $\omega \in \mathbb{C}^*$ et on pose $Q_{n,\omega} = \omega P_n\left(\frac{X}{\omega^2}\right)$.
 - a) Montrer que l'ensemble des polynômes Q de $\mathbb{C}_{n-1}[X]$ tels que X^n divise $Q^2 X \omega^2$ est $\{Q_{n,\omega}, -Q_{n,\omega}\}$.
 - **b)** Montrer que $\mathcal{R}(\omega^2 e + u) \neq \emptyset$.
- [I] [S] III.4) On suppose ici que n = N et on choisit $x \in E$ comme en III.1.a. Soit $g \in \mathcal{R}(\omega^2 e + u)$.
 - a) Montrer que g commute avec u.
 - **b)** Montrer qu'il existe $P \in \mathbb{C}_{n-1}[X]$ tel que $g(x) = \widetilde{P}(u)(x)$. Établir que $g = \widetilde{P}(u)$.
 - c) Montrer que $\mathcal{R}\left(\omega^{2}e+u\right)=\left\{\widetilde{Q}_{n,\omega}\left(u\right),\,-\widetilde{Q}_{n,\omega}\left(u\right)\right\}.$

Page 3 Michel Lepez www.klubprepa.net ©EduKlub S.A.

Problèmes de Mathématiques

Racines carrées dans $\mathcal{L}_{\mathbb{C}}\left(E\right)$ lorsque la dimension de E est finie

Énoncé

[I] [S] III.5) Application: Soit
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$
. Déterminer les éléments de $\mathcal{R}(A)$.

- III.6) On suppose que $n \geq 2$ et que $\mathcal{R}(u) \neq \emptyset$. Montrer que $\mathcal{R}(u)$ possède une infinité d'éléments.
- [I] [S] III.7) a) Déterminer les matrices qui commutent avec la matrice $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 - **b)** Trouver la forme générale des éléments de $\mathcal{R}(A)$.

Partie IV

Soit $f \in \mathcal{L}(E)$. Le polynôme caractéristique de f s'écrit $P_f = \prod_{k=0}^{\infty} (X - x_k)^{\alpha_k}$ où les x_k sont les valeurs propres de f deux à deux distinctes et les α_k leurs ordres de multiplicité respectifs. On pose $E_k = \text{Ker}(f - x_k e)^{\alpha_k}$ et on rappelle que $E = \bigoplus_{k=1}^{n} E_k$.

- [I] [S] IV.1) a) Montrer qu'il existe un unique polynôme unitaire Φ_f tel que l'ensemble des polynômes $P \in \mathbb{C}[X]$ tels que $\widetilde{P}(f) = O$ soit exactement l'ensemble des multiples de
 - **b)** Montrer que $\Phi_f = \prod_{k=1}^n (X x_k)^{\beta_k}$ avec $1 \le \beta_k \le \alpha_k$ pour tout $k \in \mathbb{N}_n$.
- [I] [S] IV.2) Montrer que si $g \in \mathcal{R}(f)$ alors $g < E_k > \subset E_k$ pour tout $k \in \mathbb{N}_n$.
- [I] [S] IV.3) a) Montrer que $x_1 = 0$ et $\beta_1 > \frac{\alpha_1 + 1}{2} \Longrightarrow \mathcal{R}(f) = \emptyset$.
 - **b)** Montrer que $0 \notin \operatorname{Sp}(f) \Longrightarrow \mathcal{R}(f) \neq \emptyset$.
 - c) Montrer que si $x_1 = 0$ et $\beta_1 \ge 2$ alors ou bien $\mathcal{R}(f) = \emptyset$ ou bien $\mathcal{R}(f)$ admet une infinité d'éléments.
- [I] [S] IV.4) On suppose ici que $\alpha_k = \beta_k$ pour tout $k \in \mathbb{N}_n$.
 - a) Montrer que $0 \notin \operatorname{Sp}(f) \Longrightarrow \operatorname{Card} \mathcal{R}(f) = 2^n$.
 - **b)** Montrer que $x_1 = 0$ et $\alpha_1 = 1 \Longrightarrow \operatorname{Card} \mathcal{R}(f) = 2^{n-1}$.

Racines carrées dans $\mathcal{L}_{\mathbb{C}}\left(E\right)$ lorsque la dimension de E est finie

Indications

Indications ou résultats

Partie I

[Q] I.1)
$$(f - ae) (f - be) = O$$
.

[Q] I.2) a) Résoudre le système
$$\begin{cases} p + q = e \\ ap + bq = f \end{cases}$$
 par rapport aux inconnues p et q .

- b) Les racines d'un polynôme annulateur de f sont valeurs propres de f. Justifier que a et b sont effectivement valeurs propres de f.
- c) Montrer que $f^{-1} = a^{-1}p + b^{-1}q$.
- [Q] I.3) Utiliser I.1 et I.2.b.
- [Q] I.4) a) Le sous-espace F est stable par produit. Montrer que (p, q) est libre.
 - **b)** On trouve les quatre projecteurs O, p, q et e.
 - c) On trouve quatre racines carrées pour f si $ab \neq 0$ et deux si ab = 0.

[Q] **I.5)** a)
$$J^m = 3^{m-1}J$$
 si $m \in \mathbb{N}^*$, puis $A^m = I_3 + (4^m - 1)\frac{J}{3}$.

- **b)** $B = I_3 \frac{J}{3}$, $C = \frac{J}{3}$, a = 1 et b = 4.
- c) Ce sont les quatre matrices $\pm B \pm 2C$.

Partie II

[Q] II.1) Pour
$$P = \sum_{m=0}^{d} a_m X^m \in \mathbb{C}[X]$$
, permuter les sommes $\sum_{m=0}^{d}$ et $\sum_{k=1}^{n}$ dans $\widetilde{P}(f)$.

- [Q] II.2) a) Appliquer II.1. En déduire que f est diagonalisable.
 - **b)** Utiliser la relation $\widetilde{L}_k(x_l) = \delta_{kl}$ et II.1.
 - c) Justifier d'abord l'inclusion $\operatorname{Sp}(f) \subset \{x_k \mid k \in \mathbb{N}_n\}$ puis remarquer l'égalité $(f x_k e)p_k = O$ pour l'inclusion inverse.
- [Q] II.3) Utiliser II.1 (f est diagonalisable) et II.2.c ce qui donne $E = \bigoplus_{k=1}^{n} \operatorname{Ker}(f x_k e)$. Conclure avec II.2.b.
- [Q] II.4) a) dim F = n.
 - **b)** Card $(\mathcal{R}(f) \cap F) = 2^n$ si $O \notin \operatorname{Sp}(f)$ et 2^{n-1} si $0 \in \operatorname{Sp}(f)$.
 - c) Il y a autant de projecteurs dans F que de choix de parties dans $\mathrm{Sp}(f)$, c'est à dire 2^n .
- [Q] II.5) a) Montrer que F est un sous-espace de l'espace des endomorphismes commutant avec f et que ce dernier espace est de dimension $\dim E = N = n = \dim F$.

Page 5 Michel Lepez www.klubprepa.net ©EduKlub S.A.
Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation