

Questions d'irrationnalité

On notera \mathcal{I} l'ensemble des nombres réels qui sont irrationnels.

- 1. (a) Soit $A(t) = t^m c_{m-1}t^{m-1} \dots c_1t c_0$, avec (c_0, \dots, c_{m-1}) dans \mathbb{Z}^m et m dans \mathbb{N}^* . Soit t une racine réelle de A. Montrer que t est ou bien dans \mathbb{Z} ou bien dans \mathcal{I} . [S]
 - (b) Soit (n, m) dans \mathbb{N}^2 , avec $m \geq 2$. Montrer que $\sqrt[m]{n}$ est dans \mathbb{N} , sinon dans \mathcal{I} . [S]
 - (c) Montrer que $\sqrt{2} + \sqrt{3}$ puis $\sqrt{2} + \sqrt{3} + \sqrt{5}$ sont dans \mathcal{I} . [S]
- 2. Pour tout entier naturel n, on définit le polynôme $A_n(t) = \frac{t^n(1-t)^n}{n!}$.

 (a) Montrer que pour tout t de l'intervalle [0,1], on a l'encadrement : $0 \le A_n(t) \le \frac{1}{4^n n!}$. [S]
 - (b) Montrer que pout tout m de \mathbb{N} , $A_n^{(m)}(0)$ est dans \mathbb{Z} . [S]
 - (c) En remarquant que $A_n(t) = A_n(1-t)$, montrer qu'il en est de même pour $A_n^{(m)}(1)$. [S]
- 3. Soit p un entier strictement positif. On va montrer que e^p est un irrationnel.

Par l'absurde, on pose $e^p = \frac{a}{b}$, où a, b sont dans \mathbb{N}^* .

Pour tout entier naturel n, on pose $\varphi_n(t) = b e^{pt} \sum_{k=0}^{2n} (-1)^k p^{2n-k} A_n^{(k)}(t)$. (a) Vérifier que $\varphi_n(0)$ et $\varphi_n(1)$ sont des entiers relatifs. [S]

- (b) Montrer que $\varphi'_n(t) = be^{pt}p^{2n+1}A_n(t)$. [S]
- (c) En déduire l'égalité : $\varphi_n(1) \varphi_n(0) = b p^{2n+1} \int_0^1 e^{pt} A_n(t) dt$ [S]
- (d) Majorer $|\varphi_n(1) \varphi_n(0)|$ en utilisant (2a). Aboutir à une contradiction si on choisit n assez grand. Conclusion? [S]
- 4. On généralise ici les résultats de la question précédente.
 - (a) Montrer que si r est dans \mathbb{Q}^* , alors e^r est dans \mathcal{I} . [S]
 - (b) En déduire que pour tout r de \mathbb{Q}^{+*} (avec $r \neq 1$) le réel $\ln r$ est irrationnel. [S]
- 5. Dans cette question, on va montrer que π^2 est irrationnel (il en découle que π est irrationnel.) Par l'absurde, on pose $\pi^2 = \frac{a}{b}$, où a, b sont dans \mathbb{N}^* . Pour tout entier naturel n, on pose $\psi_n(t) = b^n \sum_{k=0}^n (-1)^k \pi^{2n-2k} A_n^{(2k)}(t)$.

- (a) Vérifier que $\psi_n(0), \psi_n(1)$ sont entiers. [S]
- (b) On pose $\xi(t) = \psi'_n(t) \sin \pi t \pi \psi_n(t) \cos \pi t$. Montrer que $\xi'(t) = \pi^2 a^n A_n(t) \sin \pi t$. [S]
- (c) En déduire que $\psi_n(0) + \psi_n(1) = \pi a^n \int_0^1 A_n(t) \sin \pi t \, dt$. [S]
- (d) Majorer $|\psi_n(1) + \psi_n(0)|$ et aboutir à une contradiction. Conclusion? [S]
- 6. On établit ici que le seul rationnel r de $\left[0,\frac{1}{2}\right[$ tel que $\cos \pi r$ soit rationnel est $r=\frac{1}{3}$.
 - (a) Pour tout n de \mathbb{N} , montrer qu'il existe un polynôme T_n de degré n, à coefficients entiers (de coefficient dominant 2^{n-1}) tel que $\cos n\theta = T_n(\cos \theta)$. [S]
 - (b) On pose $r=\frac{m}{n}$, et on suppose que $\cos \pi r=\frac{p}{q}$, avec $\begin{cases} m\in \mathbb{N}^*, \, n\geq 2, \,\, m\wedge n=1\\ p,q\in \mathbb{N}^*, \,\, p\wedge q=1 \end{cases}$

En considérant $\cos n\theta$ avec $\theta = \pi r$ montrer : $\exists k \in \{1, ..., n-1\}, q = 2^m$, et que p est impair. [S]

(c) Par l'absurde, on suppose que l'entier k est strictement supérieur à 1.

Appliquer ce qui précède à l'angle $\theta_1 = 2\theta$ et prouver que $k < k_1 < n$, avec $k_1 = 2k - 1$.

Rien n'empêche alors de considérer les angles $\theta_2 = 2\theta_1$, $\theta_3 = 2\theta_2$, etc.

Conclure à une absurdité, et en déduire que $\cos \pi r = \frac{1}{2}$, donc que $r = \frac{1}{3}$. [S]

Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigé du problème

1. (a) On suppose que t soit une racine rationnelle de A.

Il existe donc a dans \mathbb{Z} et b dans \mathbb{N}^* , avec $a \wedge b = 1$ tels que $t = \frac{a}{b}$.

L'égalité A(t)=0 s'écrit $\frac{a^m}{b^m}=\sum\limits_{k=0}^{m-1}c_k\frac{a^k}{b^k}$ ou encore $a^m=\sum\limits_{k=0}^{m-1}c_ka^kb^{m-k}$. Cette égalité s'écrit $a^m=br$, en posant $r=\sum\limits_{k=0}^{m-1}c_ka^kb^{m-k-1}$.

Puisque r est un entier, il en découle que b divisie a^m .

Mais b étant premier avec a (donc avec a^m) cela n'est possible que si b=1.

Ainsi t = a est dans \mathbb{Z} : les seules racines possibles de A(t) dans \mathcal{I} sont des entiers.

Conclusion : une racine réelle de A est soit entière, soit irrationnelle. [Q]

(b) Le réel $\sqrt[m]{n}$ est racine du polynôme $A(t) = t^m - n$ (unitaire à coefficients entiers...)

On est donc dans les conditions d'application de la question précédente.

Si n n'est pas la puissance m-ième d'un entier (si $\sqrt[n]{n} \notin \mathbb{N}$) on en déduit que $\sqrt[n]{n}$ est dans \mathcal{I} . [Q]

(c) Posons $x = \sqrt{2} + \sqrt{3}$. On a $(x - \sqrt{2})^2 = x^2 - 2\sqrt{2}x + 2 = 3$.

On en déduit $x^2 - 1 = 2\sqrt{2}x$ puis $(x^2 - 1)^2 = 8x^2$ donc $x^4 - 10x^2 + 1 = 0$

 $x = \sqrt{2} + \sqrt{3}$ est non entier (3 < x < 4) et racine de $A(t) = t^4 - 10t^2 + 1$.

On peut donc appliquer le résultat de la question (a): le réel x est un irrationnel.

Posons $y = \sqrt{2} + \sqrt{3} + \sqrt{5} = x + \sqrt{5}$.

En utilisant ce qui précède, on peut écrire :

$$0 = x^4 - 10x^2 + 1 = (y - \sqrt{5})^4 - 10(y - \sqrt{5})^2 + 1 = y^4 - 4\sqrt{5}y^3 + 20y^2 - 24$$

Ainsi
$$(y^4 + 20y^2 - 24)^2 = 80y^6$$
, donc $B(y) = 0$, avec $B(t) = (t^4 + 20t^2 - 24)^2 - 80t^6$.

Le polynôme B est unitaire à coefficients entiers.

Comme y n'est pas entier (5 < y < 6), on en déduit que y est irrationnel. [Q]

- 2. (a) On sait que $0 \le t(1-t) \le \frac{1}{4}$ sur]0,1[. Le résultat en découle immédiatement. [Q]
 - (b) A_n est un polynôme de degré 2n.

On développe $A_n(t)$ et on trouve : $A_n(t) = \frac{t^n}{n!} \sum_{k=0}^n C_n^k (-1)^k t^k = \frac{1}{n!} \sum_{k=0}^n C_n^k (-1)^k t^{n+k}$

- La dérivée m-ième de t^{n+k} est nulle si m > n+k
- Elle vaut $\frac{(n+k)! t^{n+k-m}}{(n+k-m)!}$ si $m \le n+k$.

Dans ce cas sa valeur en zéro est nulle si m < n + k et vaut m! si m = n + k.

On en déduit que la valeur en 0 de la dérivée m-ième de A_n est nulle (donc est élément de \mathbb{Z}) sauf s'il existe un entier k de $\{0,\ldots,n\}$ tel que m=n+k, c'est-à-dire sauf si m appartient à $\{n,\ldots,2n\}$.

Dans ce cas, la dérivée en 0 du polynôme A_n est égale à celle de son terme de degré n+k=m, c'est-à-dire celle du monôme $\frac{(-1)^{m-n}}{n!} \operatorname{C}_n^{m-n} t^m$.

Donc si $n \le m \le 2n$, : $P_n^{(m)}(0) = (-1)^{m-n} \frac{m!}{n!} C_n^{m-n}$, qui est dans \mathbb{Z} .

Dans tous les cas, $P_n^{(m)}(0)$ est donc un entier relatif. [Q]

(c) Pour tout réel t, on a $A_n(t) = A_n(1-t)$, et par dérivation : $P'_n(t) = -P'_n(1-t)$.

Un récurrence évidente donne alors : $\forall m \in \mathbb{N}, \ \forall t \in \mathbb{R}, \ A_n^{(m)}(t) = (-1)^m A_n(t)$.

En particulier : $\forall m \in \mathbb{N}, P^{(m)}(1) = (-1)^n P^{(m)}(0)$ est élément de \mathbb{Z} . [Q]

Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.