Etude du potassium

Exercice XIV-4: Etude du potassium

- 1. Quelle est la configuration électronique du potassium dans l'état fondamental ? Indiquer la place du potassium (K, Z=19) dans la classification périodique. Donner le nom d'un autre élément de la même colonne.
- **2.** On rappelle les règles de Slater, permettant d'estimer l'énergie orbitalaire associée aux nombres quantiques n et l par :

$$\varepsilon(n,1) = -13.6 \cdot \left(\frac{Z * (n,1)}{n *}\right)^2 \text{ en eV } (1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J})$$

La charge effective Z^* est obtenue par la formule : $Z^* = Z - s$ où Z est le nombre réel de protons et s est la constante d'écran obtenue grâce au tableau 1 ci-dessous.

Le nombre quantique apparent n* est obtenu à partir du nombre quantique principal n grâce au tableau 2.

Tableau 1 : effet d'écran exercé sur l'électron i de la couche α par l'électron j de la couche β , selon les sous-couches respectives où se situent ces deux électrons

écran de j	j : couche	j : couche	j : couche	j : couche	j : couche
sur i	$\beta \leq \alpha - 2$	$\beta = \alpha - 1$	$\beta = \alpha$	$\beta \leq \alpha$	$\beta > \alpha$
			s et p	d	
i:s et p	1,00	0,85	0,35	0	0
i : d	1,00	1,00	1,00	0,35	0

Tableau 2: nombre quantique apparent en fonction du nombre quantique principal

n	1	2	3	4	5	6
n*	1,0	2,0	3,0	3,7	4,0	4,2

Montrer que, dans le cas particulier du potassium, l'énergie d'ionisation est égale à $-\epsilon(4,0)$ Evaluer l'énergie d'ionisation pour le potassium. La valeur expérimentale est 4,34 eV. Commenter.

Page 1 Claude ANI ES © EduKlub S.A.
Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.