

Monotonie et nature

Suites

Monotonie et nature

Enoncés

EXERCICE 1

Dans cet exercice, $(U_n)_{n_a}$ est une suite réelle telle que :

$$\forall n \in \mathbb{N}^*, U_n \leq 3 + \frac{7}{n}$$
 (1)

- a) Prouver que si elle est croissante $(U_n)_{n_{_{\!\tiny M}}}$ converge et donner un majorant de sa limite.
- b) On suppose que:

$$\forall n \in \mathbb{N}^*, \ U_n \ge 3 - \frac{(-1)^n}{n}.(2)$$

Que peut-on en déduire ?

EXERCICE 2

Soit $(w_n)_{n_{\mbox{\tiny gr}}}$ la suite définie par $w_0{\in}\mathbb{R}$ et :

$$\forall n \in \mathbb{N}, \ w_{n+1} = \frac{w_n^2 + 1}{2}$$

- 1) Prouver que la suite $(W_n)_{n_s}$ admet une limite.
- 2) Préciser, selon la valeur de w_0 , la limite de la suite $(w_n)_{n_n}$

Suites

Monotonie et nature

EXERCICE 3

Soit la suite $(U_n)_{n\geq 2}$ définie par :

$$\forall n \ge 2$$
, $U_{n=} \left(1 - \frac{2}{n^2}\right)^{3n^2}$

Déterminer la limite de $(U_n)_{n\geq 2}$.

EXERCICE 4

Soient $(U_n)_{n_\omega}$ et $(V_n)_{n_\omega}$ deux suites réelles de limite nulle et $(W_n)_{n_\omega}$ la suite définie par : $\forall n \in \mathbb{N}$, $W_n = max(U_n, V_n)$.

Déterminer la limite de $(W_n)_{n_n}$.