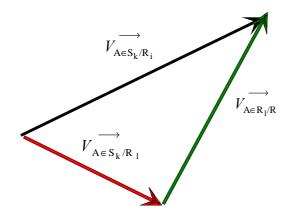
Sciences Industrielles

Cinématique du SOLIDE INDÉFORMABLE Cinématique plane : Résolution graphique

Sommaire


	IQUE ?	2
1.1.	RESUME DES SAVOIRS DANS LE BUS D'UNE ETUDE DE CINEMATIQUE D'UN MECANISME EN RESOLUTION DUE	2
1.1.1.	$\stackrel{\longrightarrow}{\longrightarrow}$.2
1.1.2.	Expliciter (formuler) les constructions issues de la relations $\overrightarrow{V}_{A \in Sk/Ri} = \overrightarrow{V}_{B \in Sk/Ri} + \overrightarrow{AB} \wedge \overrightarrow{Q}_{Sk/Ri}$:	. 2
1.2.	PRESENTATION DU MECANISME	.4
1.3.	SCHEMA CINEMATIQUE DU MECANISME ET OBJECTIF DE L'ETUDE	.4
1.3.1.		
1.4.	DONNEES ET GRAPHE DES STRUCTURES DU MECANISME	
1.4.1.	Les solides	. 5
1.4.2.		
1.4.3.		
1.4	1.31 La mobilité	
1.4	Le nombre d'équations cinématiques obtenues par composition de mouvement	5
1.4	1.33 Le nombre d'inconnues cinématiques	
	1.34 Le nombre d'inconnues cinématiques effectives	5
	4.35 Conclusion sur la possibilité de résolution	
1.4.4.	Traduction et modélisation vectorielle du mécanisme (analyse vectorielle du mécanisme)	. 5
1.4.5.	T	
1.4.6.	1	
1.5.	METHODE DE RESOLUTION PAR LA CINEMATIQUE RESOLUTION GRAPHIQUE	.7
1.6.	EPURE TRADUISANT LA GEOMETRIQUE ET LES VECTEURS VITESSES	Ç

Cours

1. COMMENT RESOUDRE LA CINEMATIQUE D'UN MECANISME PAR UNE RESOLUTION GRAPHIQUE ?

1.1. Résumé des savoirs dans le bus d'une étude de cinématique d'un mécanisme en résolution graphique

1.1.1. Expliciter (formuler) les constructions issues de la relations $\overrightarrow{V}_{A \in Sk/Ri} = \overrightarrow{V}_{A \in Sk/Ri} + \overrightarrow{V}_{A \in Rl/Ri}$:

Composition de mouvement

Tracer d'une somme vectorielle simple.

Attention, si le savoir est simple, son utilisation pose souvent des problèmes de compréhension.

1.1.2. Expliciter (formuler) les constructions issues de la relations $\overrightarrow{V}_{A \in Sk/Ri} = \overrightarrow{V}_{B \in Sk/Ri} + \overrightarrow{AB} \wedge \overrightarrow{\Omega}_{Sk/Ri}$

Les données sont : La vitesse $V_{A \in S_k/R_i}$ et la direction de la vitesse $V_{B \in S_k/R_i}$

• 1-Tracer de $V_{B \in S_k/R_i}$: (tracer en rouge)

$$V \xrightarrow[A \in Sk/Ri]{} = V \xrightarrow[B \in Sk/Ri]{} + \overrightarrow{AB} \wedge \overrightarrow{\Omega_{Sl/Ri}} \Leftrightarrow V \xrightarrow[A \in S_k/R_i]{} \overrightarrow{AB} = V \xrightarrow[B \in S_k/R_i]{} \overrightarrow{AB}$$
 traduit que la projection orthogonale de

 $\overrightarrow{V_{\mathrm{AeS_k/R_i}}}$ sur la direction de \overrightarrow{AB} est égale à la projection orthogonale de $\overrightarrow{V_{\mathrm{BeS_k/R_i}}}$ sur la direction de \overrightarrow{AB} .

• Rechercher le Centre instantané de rotation du mouvement de S_k/R_i : (tracer en bleu)

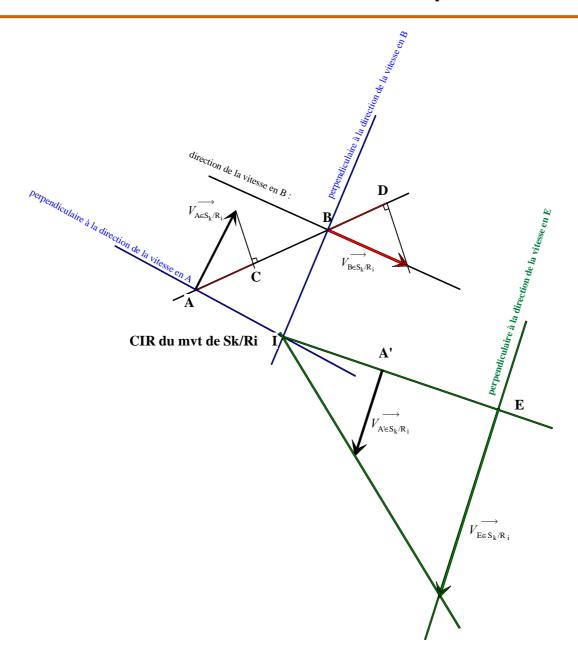
$$\overrightarrow{V_{A \in Sk/Ri}} = \underbrace{\overrightarrow{V_{I \in Sk/Ri}}}_{\widetilde{0}} + \overrightarrow{AI} \wedge \overrightarrow{\Omega_{Sk/Ri}} \text{ d'où } \overrightarrow{V_{A \in Sk/Ri}} \perp \overrightarrow{AI} \text{ et}$$

$$\overrightarrow{V_{B \in Sk/Ri}} = \underbrace{\overrightarrow{V_{I \in Sk/Ri}}}_{\widetilde{0}} + \overrightarrow{BI} \wedge \overrightarrow{\Omega_{Sk/Ri}} \text{ d'où } \overrightarrow{V_{B \in Sk/Ri}} \perp \overrightarrow{BI}$$

le point I se trouve à l'intersection de ces deux droites.

• Recherche de la vitesse d'un point E quelconque du plan, $V_{E \in S_{\nu}/R_{i}}^{\longrightarrow}$

$$\overrightarrow{V_{E \in \mathit{Sk/Ri}}} = \underbrace{\overrightarrow{V_{I \in \mathit{Sk/Ri}}}}_{0} + \overrightarrow{EI} \wedge \overrightarrow{\Omega_{\mathit{Sk/Ri}}}$$
 d'où $\overrightarrow{V_{E \in \mathit{Sk/Ri}}} \perp \overrightarrow{EI}$ et en prenant un point A' sur la droite IE tel


que
$$\|\overrightarrow{IA}\| = \|\overrightarrow{IA}\|$$
, la vitesse de A' est perpendiculaire à la droite IA

$$V \xrightarrow[A \in Sk/Ri]{} = V \xrightarrow[0]{} + \overrightarrow{A'I} \wedge \overrightarrow{\Omega}_{Sk/Ri} \quad \text{d'où } V \xrightarrow[A \in Sk/Ri]{} \perp \overrightarrow{A'I} \quad \text{et} \quad V \xrightarrow[A \in Sk/Ri]{} = V \xrightarrow[A \in$$

Page 2 Jacques AÏACHE – Jean-Marc CHÉREAU

© EduKlub S.A.

Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

Page 3 Jacques AÏACHE – Jean-Marc CHÉREAU © EduKlub S.A. Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.