Énoncés

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Montrer qu'il existe dans $\mathcal{M}_2(\mathbb{R})$ une base formée de matrices orthogonales.

Montrer que ce résultat reste vrai dans $\mathcal{M}_n(\mathbb{R})$.

EXERCICE 2 [Indication] [Correction]

- 1. Montrer que $\langle A, B \rangle = \operatorname{tr} ({}^{T}A \cdot B)$ définit un produit scalaire sur $\mathcal{M}_{n}(\mathbb{R})$.
- 2. Pour quelles matrices M l'application $A \to AM$ est-elle alors orthogonale?

Exercice 3 [Indication] [Correction]

$$\text{Montrer que } A = \begin{pmatrix} 1-i & -2 & -3 & 4 \\ -2 & 2-i & 18 & 2 \\ -3 & 18 & 1-i & 1 \\ 4 & 2 & 1 & 3-i \end{pmatrix} \text{ est inversible.}$$

Exercice 4 [Indication] [Correction]

Soit A une matrice carrée symétrique, à coefficients réels.

On suppose que $A^m=I$, pour un certain entier m. Montrer que $A^2=I$.

EXERCICE 5 [Indication] [Correction]

Soit $A = (a_{ij})$ une matrice orthogonale d'ordre n. Prouver $\sum_{i,j=1}^{n} |a_{ij}| \le n\sqrt{n}$ et $\left|\sum_{i,j=1}^{n} a_{ij}\right| \le n$.

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

Dans
$$\mathcal{M}_2(\mathbb{R})$$
, considérer $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $D = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Dans $\mathcal{M}_n(\mathbb{R})$ avec $n \geq 2$, noter E_{ij} les matrices de la base canonique de $\mathcal{M}_n(\mathbb{R})$.

Considérer $F_j = I_n - 2E_{jj}$ (pour $j \ge 2$). Pour tous i < j noter G_{ij} et H_{ij} les matrices qui se déduisent respectivement de I_n et de F_j par échange des lignes d'indice i et j.

Considérer la famille formée de I_n , des F_j , des G_{ij} et des H_{ij} .

INDICATION POUR L'EXERCICE 2 [Retour à l'énoncé]

- 1. Si $A = (a_{ij})$ et $B = (b_{ij})$, montrer que $A, B > \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ki}b_{ki}$.
- 2. Montrer que $A \to AM$ est orthogonale $\Leftrightarrow \operatorname{tr}({}^{T}ABM{}^{T}M) = \operatorname{tr}({}^{T}AB)$, pour tous A, B. Montrer que cela signifie que M est une matrice orthogonale.

Indication pour l'exercice 3 [Retour à l'énoncé]

 $A = S - iI_4$, où S est symétrique réelle.

D'après le cours, les valeurs propres de S sont toutes réelles.

Indication pour l'exercice 4 [Retour à l'énoncé]

Diagonaliser A. Montrer que les valeurs propres de A sont dans $\{-1,1\}$.

INDICATION POUR L'EXERCICE 5 [Retour à l'énoncé]

Majorer $S = \sum_{i,j=1}^{n} |a_{ij}|$ en utilisant Cauchy-Schwarz.

Pour la deuxième majoration, poser $T = \sum_{i,j=1}^{n} a_{ij}$.

Soit $f \in \mathcal{O}(\mathbb{R}^n)$ de matrice A dans la base canonique. Soit $u = (1, 1, \dots, 1)$.

Vérifier que $T = \langle u, f(u) \rangle$. Appliquer à nouveau Cauchy-Schwarz.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.