

Intégration sur un intervalle quelconque (II)

Énoncés

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Après avoir prouvé son existence, calculer l'intégrale $I = \int_0^{+\infty} \frac{\ln x}{1+x^2} dx$.

EXERCICE 2 [Indication] [Correction]

Etudier l'existence de l'intégrale $I = \int_0^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}(1+x^{\beta})}$, avec $(\alpha, \beta) \in \mathbb{R}^2$.

EXERCICE 3 [Indication] [Correction]

Après avoir prouvé son existence, calculer l'intégrale $I = \int_0^{+\infty} \frac{\mathrm{e}^{-x} - \mathrm{e}^{-2x}}{x} \, \mathrm{d}x$.

Exercice 4 [Indication] [Correction]

Etudier l'existence de l'intégrale $I = \int_0^1 |1 - x^{\alpha}|^{\beta} dx$, avec $(\alpha, \beta) \in \mathbb{R}^* \times \mathbb{R}$.

EXERCICE 5 [Indication] [Correction]

On définit la fonction Gamma d'Euler : $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- 1. Préciser le domaine de définition de Γ .
- 2. Etablir la relation $\Gamma(x+1)=x\Gamma(x)$. En déduire $\Gamma(n)$ pour tout n de \mathbb{N}^* .

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Intégration sur un intervalle quelconque (II)

Indications, résultats

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

Constater que $\lim_{x\to 0} \sqrt{x} f(x) = 0$ et que $\lim_{x\to 0} x\sqrt{x} f(x) = 0$.

Poser $t = \frac{1}{x}$ pour $0 < a \le x \le b$. Dans le résultat, passer à la limite et trouver I = 0.

Indication pour l'exercice 2 [Retour à l'énoncé]

L'intégrale existe si et seulement si α est strictement compris entre 1 et $1-\beta$, avec $\beta \neq 0$.

Indication pour l'exercice 3 [Retour à l'énoncé]

Utiliser $\lim_{x\to 0} f(x) = 1$ et $\lim_{x\to +\infty} x^2 f(x) = 0$.

Poser
$$I = \lim_{a \to 0} I_a$$
, en notant $I_a = \int_a^{+\infty} \frac{e^{-x}}{x} dx - \int_a^{+\infty} \frac{e^{-2x}}{x} dx$.

Poser t = 2x dans la deuxième intégrale et en déduire $I_a = \int_a^{2a} \frac{e^{-x} - 1}{x} dx + \ln 2$.

Conclure en utilisant la continuité de $x \mapsto \frac{e^{-x} - 1}{x}$ en 0.

Indication pour l'exercice 4 [Retour à l'énoncé]

L'intégrale existe si et seulement si $\beta > \max(-1, -1 - \alpha)$.

Indication pour l'exercice 5 [Retour à l'énoncé]

- 1. $\Gamma(x)$ est définie si et seulement si x > 0.
- 2. Avec x > 0, intégrer $\Gamma(x+1)$ par parties. On trouve $\Gamma(x+1) = x\Gamma(x)$. Montrer enfin que $\forall n \in \mathbb{N}^*, \ \Gamma(n) = (n-1)!$

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.