

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Montrer que $\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}$ est un entier.

EXERCICE 2 [Indication] [Correction]

Soient m et n des entiers naturels.

- 1. Montrer que si n n'est pas un carré parfait, alors \sqrt{n} est irrationnnel.
- 2. Montrer que si m et n ne sont pas des carrés, alors $\sqrt{m} + \sqrt{n}$ n'est pas rationnel.

EXERCICE 3 [Indication] [Correction]

- 1. Montrer que pour tous a, b dans \mathbb{Q} , $a + b\sqrt{2} = 0 \Leftrightarrow a = b = 0$.
- 2. Montrer que : $\forall (a, b, c) \in \mathbb{Q}^3$, $a\sqrt{2} + b\sqrt{3} + c\sqrt{5} = 0 \Leftrightarrow a = b = c = 0$.

Exercice 4 [Indication] [Correction]

Montrer que $\sqrt[3]{5} + \sqrt{2}$ est un irrationnel.

EXERCICE 5 [Indication] [Correction]

Soit A l'ensemble des réels de [0,1] dont le développement décimal réduit ne contient pas 9. Montrer que A est un ensemble fermé.

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

Posons $a = \sqrt[3]{45 + 29\sqrt{2}}, b = \sqrt[3]{45 - 29\sqrt{2}}.$

Utiliser $a^3 + b^3 = 90$ et vérifier que ab = 7.

En déduire que x = a + b est racine d'un polynôme de degré 3. On trouve x = 6.

INDICATION POUR L'EXERCICE 2 [Retour à l'énoncé]

- 1. Supposer par l'absurde que n n'est pas un carré et que \sqrt{n} est rationnel $\frac{a}{b}$. Raisonner sur les facteurs premiers de n, a et b.
- 2. Par l'absurde, supposer que $r=\sqrt{m}+\sqrt{n}$ est rationnel. En déduire que \sqrt{mn} est rationnel et utiliser la question précédente.

Indication pour l'exercice 3 [Retour à l'énoncé]

- 1. Facile en utilisant la première question de l'exercice précédent.
- 2. Chercher à isoler $\sqrt{6}$ par exemple. On utilise encore la question 1 de l'exercice précédent.

INDICATION POUR L'EXERCICE 4 [Retour à l'énoncé]

Supposer que $x = \sqrt[3]{5} + \sqrt{2} \in \mathbb{Q}$ et utiliser $5 = (x - \sqrt{2})^3$.

INDICATION POUR L'EXERCICE 5 [Retour à l'énoncé]

Soit (v_n) une suite de A, convergente vers ℓ . Il faut montrer $\ell \in A$.

Pour cela vérifier que pour tout entier k, la suite $a_{n,k}$ des k-ièmes décimales des v_n successifs est stationnaire en une valeur b_k .

Montrer que $\ell = \sum_{k=1}^{+\infty} b_k 10^{-k}$, qui est bien un élément de A.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.