Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Soit f une application de $\mathcal{P}(E)$ dans \mathbb{R} .

On suppose que pour toutes parties A et B disjointes de E, $f(A \cup B) = f(A) + f(B)$.

Montrer que $f(\emptyset) = 0$.

Prouver que pour toutes parties A et B de E, $f(A \cup B) = f(A) + f(B) - f(A \cap B)$.

Exercice 2 Indication Correction

Soit f une application de E dans F.

Montrer que pour toute partie A de E, $f(\tilde{f}(B) \cap A) = B \cap f(A)$.

EXERCICE 3 [Indication] [Correction]

Soit f une application de E dans E.

Montrer que f est bijective \Leftrightarrow pour toute partie A de E, $f(\overline{A}) = \overline{f(A)}$ (on note \overline{A} le complémentaire de A dans E.)

EXERCICE 4 [Indication] [Correction]

Soient E un ensemble non vide, et A, B deux parties de E.

On note $[A, A \cup B] = \{X \subset E, A \subset X \subset A \cup B\}$ et $[A \cap B, B] = \{Y \subset E, A \cap B \subset Y \subset B\}$.

On définit $f: [A, A \cup B] \to [A \cap B, B]$ par $f(X) = X \cap B$.

On définit $q: [A \cap B, B] \to [A, A \cup B]$ par $q(Y) = Y \cup A$.

Montrer que f et g sont des bijections réciproques l'une de l'autre.

EXERCICE 5 [Indication] [Correction]

Soit f une application de E dans F.

On définit l'application $g: \mathcal{P}(F) \to \mathcal{P}(E)$ par $: \forall Y \subset F, g(Y) = \overline{f}(Y).$

- 1. Montrer que g est injective $\Leftrightarrow f$ est surjective.
- 2. Montrer que q est surjective $\Leftrightarrow f$ est injective.

EXERCICE 6 [Indication] [Correction]

Soit f une application de E dans F. Montrer l'équivalence de :

- (a) f est injective
- (b) Pour toutes parties A et B de E, $f(A \cap B) = f(A) \cap f(B)$.

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.