QUATERNIONS

Quaternions

On se place dans l'algèbre $\mathcal{M}_4(\mathbb{C})$ et on définit les quatre matrices suivantes :

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} K = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} L = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

- 1. (a) Former le polynôme caractéristique de J. Cette matrice est-elle diagonalisable dans \mathbb{R} ? dans \mathbb{C} ? [S]
 - (b) Reprendre la question (a) avec la matrice K. [S]
 - (c) Reprendre la question (a) avec la matrice L. [S]
- 2. Montrer que $G = \{I, J, K, L, -I, -J, -K, -L\}$ est un sous-groupe non commutatif, pour le produit des matrices, du groupe $\mathcal{GL}_4(\mathbb{R})$ des matrices inversibles d'ordre 4. [S]
- 3. Soient a, b, c, d quatre nombres complexes, et A = aJ + bK + cL + dI.
 - (a) Déduire de ce qui précède une expression de A^2 en fonction de A et de I. [S]
 - (b) Déterminer une condition nécessaire et suffisante portant sur a, b, c, d pour que la matrice A^2 soit diagonale. Quelle est alors son expression en fonction de I? [S]
 - (c) On note A_0 la matrice A obtenue pour d=0. Calculer $\det A_0^2$ et en déduire $\det A_0$. [S]
- 4. (a) Déterminer le polynôme caractéristique de A en considérant le produit de la matrice $A \lambda I$ (avec $\lambda \in \mathbb{C}$) par sa transposée. [S]
 - (b) En déduire les valeurs propres de A et exprimer det A en fonction de a, b, c, d. [S]
 - (c) Déterminer une condition nécessaire et suffisante portant sur a, b, c, d pour que A admette une valeur propre quadruple. [S]
 - (d) Déterminer une condition nécessaire et suffisante portant sur a, b, c, d pour que les valeurs propres de A soient -i et i. [S]
- 5. Donner une condition nécessaire et suffisante sur a, b, c, d pour que A soit inversible. [S]
- 6. On pose $\omega=a^2+b^2+c^2+d^2$ et on suppose que A est inversible.
 - (a) Calculer $\det A^{-1}$ et déterminer A^{-1} en effectuant le produit $A^{\mathrm{T}}A$. [S]
 - (b) Déterminer les valeurs propres de A^{-1} . [S]
 - (c) Calculer le polynôme caractéristique de A^{-1} . [S]
- 7. Soit E l'ensemble des matrices A, quand (a,b,c,d) décrit \mathbb{C}^4 .
 - (a) Montrer que E est une algèbre non commutative possédant des diviseurs de zéro. [S]
 - (b) Donner une condition nécessaire et suffisante pour que A, A' commutent dans E. [S]
- 8. Soit F l'ensemble des matrices A, quand (a, b, c, d) décrit \mathbb{R}^4 . Montrer que toute matrice non nulle de F est inversible dans F. [S]

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.