SUJETS COURTS DE MATHEMATIQUES

DIAGONALISATION 3 HEC.ESCP

ENONCE DE L'EXERCICE

ENONCE-3

Soit $A \in \mathcal{M}_2(\mathbb{R})$ telle que $A + A^3 = (0)$.

Montrer que la matrice A est nulle ou semblable à la matrice $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Indications - Diagonalisation 3.

- 0 est la seule valeur propre possible.
- Si 0 est la seule valeur propre, A est semblable à $\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}$ (penser au noyau) et b=0 : conclure.
- Si spect $(A) = \emptyset$, considérer la base canonique (e_1, e_2) de \mathbb{R}^2 ; montrer que $(e_1, f(e_1))$ (où f est canoniquement associé à A) est une base de \mathbb{R}^2 , puis que A est semblable à $B = \begin{pmatrix} 0 & a \\ 1 & b \end{pmatrix}$: conclure.

page 2 Jean MALLET © EDUKLUB SA

Eléments de correction : diagonalisation 3.

• Le polynôme $X+X^3$ est annulateur de A, donc la seule valeur propre réelle possible est 0. Donc spect $A \subset \{0\}$.

Premier cas : 0 est la seule valeur propre de A.

Plaçons nous dans $E = \mathbb{R}^2$ muni de sa base canonique (e_1, e_2) et associons canoniquement à A l'endomorphisme f.

Il existe un vecteur $u \neq 0_E$ dans Ker f. Complétons par un vecteur $v \in E$ tel que (u, v) soit une base de E. Dans cette base la matrice B de f est $B = \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}$. Mais b = 0 puisque A, donc f, n'admet que 0 comme valeur propre.

 $B^2=(0),$ donc $B^3=(0)$; la relation $A+A^3=(0)$ équivaut à $B+B^3=(0),$ donc B=(0),d'où A=(0).

Si A admet 0 comme seule valeur propre, alors A = (0).

Deuxième cas : A n'admet aucune valeur propre réelle :

 $(e_1, f(e_1))$ est une famille libre : en effet, dans le cas contraire , **puisque** $e_1 \neq 0_E$, il existerait $\lambda \in \mathbb{R} / f(e_1) = \lambda e_1$. Cette égalité indiquerait que e_1 est un vecteur propre associé à λ et cela est contradictoire.

Dans la base $(e_1, f(e_1))$, la matrice B de f est $\begin{pmatrix} 0 & a \\ 1 & b \end{pmatrix}$. Le calcul donne

$$B + B^3 = \begin{pmatrix} ab & a + a^2 + ab^2 \\ 1 + a + b^2 & b + 2ab + b^3 \end{pmatrix}.$$

L'égalité $B+B^3=(0)$ implique ab=0 et $1+a+b^2=0$. Si a=0, on obtient $1+b^2=0$ ce qui est impossible dans $\mathbb R$: donc b=0 et a=-1. On vérifie que les deux autres égalités sont satisfaites.

Si A n'admet pas de valeurs propres réelles, alors A est semblable à $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

page 3 Jean MALLET © EDUKLUB SA