EXERCICES DE MATHEMATIQUES

ANALYSE

ENONCE DE L'EXERCICE

ENONCE-34

On considère la suite de polynômes :

 $P_0 = 1 \text{ et } \forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, \ P_n(x) = (nx+1)P_{n-1}(x) + x(1-x)P'_{n-1}(x).$

- 1) Déterminer, pour tout $n \in \mathbb{N}$, le degré de P_n et le coefficient du terme de plus haut degré.
- 2) Montrer que : $\forall n \in \mathbb{N}^*$, P_n a toutes ses racines réelles (aucune complexe). Montrer que toutes ces racines sont simples (non multiples) et strictement négatives.

CORRIGE DE L'EXERCICE NUMERO 34

$$P_1(x) = (x+1)P_0(x) = x+1.$$

$$P_2(x) = (2x+1)P_1(x) + x(1-x)P_1(x) = (2x+1)(x+1) + x - x^2 = x^2 + 4x + 1.$$

Faisons un raisonnement par récurrence.

Pour $n \ge 1$, soit \mathcal{H}_n la propriété : $\exists Q_n \in \mathbb{R}_{n-1}[X] / \forall x \in \mathbb{R}, \ P_n(x) = x^n + Q_n(x)$.

- Cette propriété est satisfaite pour n = 1, 2.
- Supposons que pour un entier $n \ge 1$ donné

$$\exists Q_n \in \mathbb{R}_{n-1}[X] / \forall x \in \mathbb{R}, \ P_n(x) = x^n + Q_n(x).$$

$$P_{n+1}(x) = ((n+1)x+1)P_n(x) + (x-x^2)P'_n(x).$$

Dans P_{n+1} il n'y a visiblement pas de terme de degré strictement supérieur à n+1 car $x \longmapsto ((n+1)x+1)P_n(x)$ est de degré n+1 ainsi que $x \longmapsto (x-x^2)P'_n(x)$.

Cherchons le terme de degré n+1.

$$\begin{array}{ll} ((n+1)x+1)P_n(x) &= (n+1)xP_n(x)+P_n(x)\\ &= (n+1)x(x^n+Q_n(x))+P_n(x) \quad \text{grâce à l'hypothèse de récurrence}\\ &= (n+1)x^{n+1}+\underbrace{(n+1)xQ_n(x)+P_n(x)}_{\deg \leq n} \end{array}$$

$$\begin{split} P_n'(x) &= nx^{n-1} + Q_n'(x) \text{ avec } \deg Q_n'(x) \leq n-1 \\ (x-x^2)P_n'(x) &= (x-x^2)(nx^{n-1} + Q_n'(x)) \\ &= -nx^{n+1} + \underbrace{(x-x^2)Q_n'(x) + nx^n}_{\deg \leq n} \end{split}$$

Donc le terme de degré n+1 de $P_{n+1}(x)$ est $(n+1)x^{n+1} - nx^{n+1} = x^{n+1}$.

On peut donc affirmer,

$$\exists Q_{n+1} \in \mathbb{R}_n[X] / \forall x \in \mathbb{R}, \ P_{n+1}(x) = x^{n+1} + Q_{n+1}(x)$$
. C'est la propriété \mathcal{H}_{n+1}

La propriété est héréditaire et par principe du raisonnement par récurrence elle est vraie pour tout entier n > 1.

On remarque qu'elle est vraie aussi pour n = 0 car $P_0(x) = 1 = x^0 + Q_0(x)$ où Q_0 est le polynome nul dont par convention le degré vaut $-\infty$.

2)

Nous allons montrer, en même temps, que P_n (pour $n \ge 1$) a toutes ses racines réelles, distinctes et négatives ; et nous allons faire celà, bien sûr, par récurrence.

Pour cela, notons \mathcal{P}_n la propriété suivante :

Pour $n \ge 1$, P_n a n racines réelles, distinctes et négatives.

• Initialisation : $P_1(x) = x + 1$. Donc P_1 a une racine réelle négative, x = -1.

Comme on parle de racines distinctes, regardons le cas n=2.

$$P_2(x) = x^2 + 4x + 1 = (x+2)^2 - 3$$
. Ses racines sont donc $x = -2 + \sqrt{3} < 0$ et $x = -2 - \sqrt{3} < 0$.

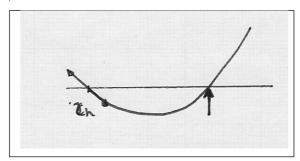
Supposons que pour un entier $n \geq 2$ on ait la propriété : P_n a n racines réelles, distinctes et négatives et notons x_1, \ldots, x_n ces racines rangées dans l'ordre croissant, c'est-à-dire : $x_1 < \cdots < x_n < 0$.

• La racine x_i est simple, donc $P'_n(x_i) \neq 0$.

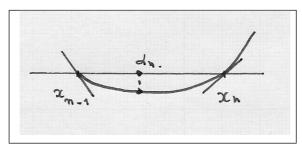
page 2 Jean MALLET © EDUKLUB SA

- Regardons le signe de $P'_n(x_i)$.
- $P_n(x_n) = 0$ et $\lim_{x \to +\infty} P_n(x) = +\infty$; on conclut que $P'_n(x_n) > 0$, sinon au voisinage de x_n , sur un intervalle de la forme $]x_n, x_n + \alpha[$, $P_n(x)$ serait strictement négatif, donc P_n s'annulerait après x_n et cela est impossible puisque x_n est la dernière racine de

On aurait, au mieux, cette situation:

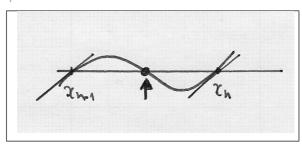


Donc $P'_n(x_n) > 0$ et on a cette situation :



 $P'_n(x_{n-1}) < 0$. Sinon sur l'intervalle $]x_{n-1}, x_n[P_n]$ prendrait des valeurs de signes contraires, donc s'annulerait, ce qui donnerait une racine suplémentaire.

On aurait, au mieux, cette situation:



• On voit alors facilement que :

Si n est pair, $P'_n(x_{2k}) > 0$ et $P'_n(x_{2k+1}) < 0$

Donc $P'_n(x_1) < 0$

Si *n* est impair, $P'_n(x_{2k}) < 0$ et $P'_n(x_{2k+1}) > 0$

Donc $P'_n(x_1) > 0$.

- Occupons-nous des racines de P_{n+1} .
- Remarquons que pour tout indice $i \in [1, n]$, $P_{n+1}(x_i) = x_i(1-x_i)P'_n(x_i)$; donc pour tout indice $i \in [1, n-1]$,

 $P_{n+1}(x_{i+1}) \times P_{n+1}(x_i) = x_{i+1}(1-x_{i+1})P_n'(x_{i+1}) \times x_i(1-x_i)P_n'(x_i) < 0, \text{ puisque } x_i(1-x_i) < 0,$ ainsi que $x_{i+1}(1-x_{i+1})$ ainsi que $P_n'(x_{i+1}) \times P_n'(x_i)$ (d'après ce qui précède).

La fonction P_{n+1} est continue sur $]x_i, x_{i+1}[$ et change de signe, donc elle s'annule au moins une fois en vertu du théorème des valeurs intermédiaires : cela fait déjà, pour

 P_{n+1} , n-1 racines réelles négatives.

© EDUKLUB SA

Jean MALLET Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des oeuvres autre que la consultation individuelle et privée sont interdites.

 $ho P_{n+1}(x_n) < 0$ car $P_{n+1}(x_n) = x_n(1-x_n)P_n'(x_n)$ avec $x_n(1-x_n) < 0$ et $P_n'(x_n) > 0$ comme nous venons de le voir. Remarquons que $P_{n+1}(0) = P_n(0)$ d'après la relation liant P_{n+1} et P_n . Donc $P_{n+1}(0) = P_1(0) = 1$.

Sur l'intervalle $]x_n, 0[$, P_{n+1} change de signe, donc s'annule. Cela fait une n ème racine, négative et distincte des précédentes.

▶ Recherche de la dernière.

Pour les mêmes raisons que précédemment, $P_{n+1}(x_1)$ est du signe contraire de celui de $P'_n(x_1)$.

* Si n est pair. On sait qu'alors $P_n'(x_1) < 0$, donc $P_{n+1}(x_1) > 0$. De plus $P_{n+1}(x) \sim x^{n+1}$, donc $\lim_{x \to -\infty} P_{n+1}(x) = \lim_{x \to -\infty} x^{n+1} = -\infty$ (car n+1 est impair)

Donc sur l'intervalle $]-\infty, x_1[$, le polynôme P_{n+1} change de signe donc s'annule en une valeur strictement inférieure à x_1

* Si n est impair. On sait qu'alors $P'_n(x_1) > 0$, donc $P_{n+1}(x_1) < 0$. De plus $\lim_{x \to -\infty} P_{n+1}(x) = \lim_{x \to -\infty} x^{n+1} = +\infty$ (car n+1 est pair)

Donc sur l'intervalle $]-\infty,x1[$, le polynôme P_{n+1} change de signe donc s'annule en une valeur stricteemnt inférieure à x_1

Sur l'intervalle $]-\infty,x_1[$, le polynôme P_{n+1} s'annule.

 P_{n+1} admet donc n+1 racines réelles, distinctes, négatives.

La propriété est donc héréditaire et on peut affirmer :

 $\forall n \in \mathbb{N}^*, P_n \text{ admet } n \text{ racines réelles, distinctes, négatives}$

page 4 Jean MALLET © EDUKLUB SA