Suites

Calcul de limites

Calcul de limites

Méthodes

Notation : il y a deux façons de noter une limite :

- $\lim_{n \to +\infty} u_n = 3$
- $\lim_{n \to \infty} u = 3$

Attention à ne pas parler de limite ni d'écrire $\lim_{n \to +\infty} u_n$ tant que l'existence de la limite n'a pas été prouvée. De plus, pour « passer la limite » dans une égalité ou dans une inégalité, il faut s'assurer au préalable que les suites en présence convergent.

1) Limite usuelle

Dans certains cas, il est possible de donner la limite d'une suite d'après le cours (négligeabilités usuelles) :

- Si |x| < 1, alors $\lim_{n \to +\infty} x^n = 0$
- Si |q| < 1, alors $\lim_{n \to +\infty} nq^n = 0$
- Si $|\mathbf{q}| < 1$, alors $\lim_{n \to +\infty} n^{\alpha} q^n = 0$
- $\lim_{n\to+\infty} \frac{\ln n}{n} = 0,$
- le produit d'une suite bornée par une suite convergeant vers 0 est une suite convergeant vers 0.

Suites

Calcul de limites

2) Calcul direct

Dans certains cas, il est possible de déterminer la limite d'une suite en déterminant la limite de ses composantes. Deux cas principaux se présentent :

Limite de la somme de deux suites dont on connaît les limites respectives :

	-∞		+∞	
		ℓ ∈ℝ		
-∞	-∞		Indéterminé	
		∞		
ℓ′ ∈ℝ	-∞		+∞	
		$\ell+\ell'$		
+∞	Indéterminé		$+\infty$	
		$+\infty$		

- Limite du produit de deux suites dont on connaît les limites respectives :

	-∞	ℓ <0	0	ℓ>0	$+\infty$
-∞	+∞	+∞	Indéterminé	-∞	-∞
ℓ′<0	+∞	<i>ℓℓ′</i>	0	ૄ (૧'	-∞
0	Indéterminé	0	0	0	Indéterminé
ℓ′>0	-∞	ℓℓ′	0	<i>ℓℓ′</i>	+∞
+∞	-∞	-∞	Indéterminé	+∞	+∞

- Si la suite est la suite image par une fonction f d'une suite simple. Se souvenir que, si la suite $(U_n)_{n_{ss}}$ converge vers ℓ et si $\lim_{x\to\ell} f(x) = \alpha$, alors la suite $(f(u_n))_{n_{ss}}$ converge vers α .
- Pour déterminer la limite d'une suite de la forme $(U_n^{\ V_n})_{n_\omega}$ (où u est une suite strictement positive), on peut rechercher la limite de la suite $(v_n ln(u_n))_{n_\omega}$ puis utiliser le point précédent avec la fonction exponentielle.
- Pour déterminer la limite d'une suite dont la forme est un produit, on peut se ramener à une somme en utilisant la fonction ln.

Page 2 Matthias FEGYVERES – Stéphane PRETESEILLE © EduKlub S.A. Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

Suites

Calcul de limites

3) Par comparaison avec une autre suite

Pour déterminer la limite d'une suite, on peut utiliser :

- Les équivalents (deux suites équivalentes admettant une limite tendent vers la même limite)
- Les négligeabilités.

4) En utilisant le théorème de l'encadrement

Si u, v et w sont trois suites réelles telles que u et w soient convergentes de limite ℓ ($\ell \in \mathbb{R}$) et s'il existe un rang $n_0 \in \mathbb{N}$ tel que : $\forall n \geq n_0$, $u_n \leq v_n \leq w_n$, alors v converge vers ℓ .

Attention ... Il faut que les suites u et w convergent vers la même limite.

5) Si l'on veut montrer que la suite tend vers ℓ

- Montrer que la suite $(u_n \ell)_{n_n}$ tend vers 0.
- Utiliser la définition de la limite (rare) :

U est une suite convergente si : $\exists \ell \in \mathbb{R}$, $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}$, $\forall n \geq n_0$, $|u_n - \ell| < \epsilon$ ou $|u_n - \ell| \leq \epsilon$ ℓ est alors l'unique limite de u,

- Raisonner par l'absurde.

6) Si l'on veut montrer que la suite admet une limite infinie

- Montrer que la suite est minorée par une suite tendant vers $+\infty$ ou majorée par une suite tendant vers $-\infty$.
- Utiliser la définition (rare)