Loi d'une variable discrète

Loi d'une variable discrète

I. Variables aléatoires

- Variable aléatoire réelle. Soit(Ω , \mathcal{A}) un espace probabilisable. On appelle variable aléatoire réelle (ou VAR) définie sur (Ω , \mathcal{A}), toute application X : $\Omega \to \mathbb{R}$ telle que, pour tout intervalle I de \mathbb{R} , $X^{-1}(I) \in \mathcal{A}$.
- Variable aléatoire réelle discrète. On dit que X est une variable aléatoire discrète lorsque $X(\Omega)$ est de cardinal fini ou dénombrable (i.e. en bijection avec $\mathbb N$ ou une partie de $\mathbb N$). On note alors : $X(\Omega)=\{x_i,i\in I\}$ où I est un intervalle de $\mathbb Z$ et l'application $i\mapsto x_i$ est strictement croissante.
- Soient X et Y deux variables aléatoires définies sur (Ω, \mathcal{A}) et $\lambda \in \mathbb{R}$. X + Y, λ X et XY sont alors des variables aléatoires définies sur (Ω, \mathcal{A}) .

II. Loi de probabilité et fonction de répartition

Loi de probabilité d'une variable aléatoire réelle discrète. On appelle loi de probabilité (ou distribution) d'une variable aléatoire réelle discrète X l'application $p: \left| \begin{array}{c} X(\Omega) \to \mathbb{R} \\ i \mapsto p(X=i) \end{array} \right|$

Pour déterminer la loi d'une variable aléatoire, on peut, si l'on ne peut pas reconnaître en X une variable aléatoire suivant une loi classique, déterminer successivement l'ensemble $X(\Omega)$ des valeurs prises par X puis déterminer, pour tout $x_k \in X(\Omega)$, la valeur de $p(X = x_k)$ Pour cela, on peut utiliser des raisonnements probabilistes en décomposant, pour tout $x_k \in X(\Omega)$, l'événement $[X = x_k]$.

• Fonction de répartition d'une variable aléatoire réelle discrète. On appelle fonction de répartition d'une variable aléatoire réelle discrète X l'application

$$\begin{vmatrix} F : \mathbb{R} \to \mathbb{R} \\ x \mapsto p(X \le x) \end{vmatrix}$$

■ Soit X une variable aléatoire réelle discrète telle que $X(\Omega) = \{x_i, i \in [1, n]\}$ avec $\forall i \in [2, n], x_{i-1} < x_i$. On a : $\forall i \in [2, n], p(X = x_i) = F(x_i) - F(x_{i-1})$.

Page 1 Matthias FEGYVERES – Stéphane PRETESEILLE

© EduKlub S.A.

Loi d'une variable discrète

III. Espérance, variance, écart-type

1. <u>Définitions</u>

Soit X une variable aléatoire réelle discrète telle que $X(\Omega) = \{x_i, i \in I\}$

- Espérance. X admet une espérance si la série de terme général $x_i p(X = x_i)$ est absolument convergente et on a alors : $E(X) = \sum_{i=1}^{n} x_i p(X = x_i)$
- Variance. X admet une variance si X admet une espérance et si la série de terme général $(x_i E(X))^2 p(X = x_i)$ est convergente (ou si $E(X^2)$ existe) et on a alors : $V(X) = \sum_{i=1} (x_i E(X))^2 p(X = x_i) = E[(X E(X))^2]$, soit : $V(X) = E(X^2) E(X)^2$.
- Ecart-type. Si X admet une variance, on appelle écart-type de X le nombre : $\sigma_X = \sqrt{V(X)}$

2. Théorèmes

■ Soient X une variable aléatoire réelle discrète telle que $X(\Omega) = \{x_i, i \in I\}$, f une fonction définie sur $X(\Omega)$ et Y = f(X). Si la série de terme général $f(x_i)$ $p(X = x_i)$ est absolument convergente, alors Y admet une espérance et cette espérance vaut : $E(Y) = \sum_{i \in I} f(x_i) p(X = x_i)$ (théorème dit « de transfert »). En particulier, on a : $E(X^2) = m_2(X)$.

Soit X une variable aléatoire réelle discrète. On a :

- $\forall (a,b) \in \mathbb{R}^2$, E(aX+b) = aE(X) + b (si X admet une espérance),
- $\forall (a,b) \in \mathbb{R}^2, V(aX+b) = a^2V(X) + b$ (si X admet une variance),
- $\forall (a,b) \in \mathbb{R}^2$, $\sigma_{ax+b} = |a|\sigma_x$ (si X admet une variance).

3. Variable centrée, réduite, centrée réduite

- Variable centrée. Une variable aléatoire est dite centrée si elle admet une espérance et si cette espérance est nulle. La variable aléatoire Y centrée associée à la variable aléatoire X est : Y=X-E(X).
- Variable réduite. Une variable aléatoire est dite réduite si elle admet une variance et si cette variance est égale à 1. La variable aléatoire Y réduite associée à la variable aléatoire X (non quasi-certaine) est : $Y = \frac{X}{\sigma_v}$.

age 2 Matthias FEGYVERES – Stéphane PRETESEILLE

© EduKlub S.A.

Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

Loi d'une variable discrète

■ Variable centrée réduite. Une variable aléatoire est dite centrée réduite si elle admet une variance, si son espérance est nulle et sa variance est égale à 1. La variable aléatoire Y centrée réduite associée à la variable aléatoire X (non quasicertaine) est : $Y = X^* = \frac{X - E(X)}{\sigma_X}$.

IV. Lois discrètes usuelles

Loi	Notation	X(Ω)	p(X=k)	E(X)	V(X)
Loi uniforme Tirage au hasard d'un objet parmi n numérotés de 1 à n. X est le numéro de l'objet tiré.	X → U([1, n])	[1, <i>n</i>]	<u>1</u>	<u>n+1</u> 2	$\frac{n^2 - 1}{12}$
Loi de Bernoulli Réalisation d'une expérience n'ayant que deux issues possibles et dont la probabilité de succès est p. Loi indicatrice d'un événement.	X ⇒ β(1, p)	{0, 1}	p(X=1)=p p(X=0)=1-p	р	pq
Loi binomiale Réalisation de n essais indépendants d'une expérience à deux issues possibles et dont la probabilité de succès est p. X est le nombre de succès.	X ⇒ B(n, p)	[[0, <i>n</i>]]	$C_n^k p^k (1-p)^{n-k}$	np	npq
Loi hypergéométrique Tirage de n individus parmi N dont une proportion p de type A. X est le nombre d'individus de type A tirés.	X ⇒ ℋ(N,n,p	C [[0, n]]	$\frac{C_{Np}^k C_{N(1-p)}^{n-k}}{C_N^n}$	np	$\frac{npq}{N-1}(N-n)$
Loi géométrique Réalisation d'essais indépendants d'une expérience à deux issues possibles. X est le temps d'attente du premier succès.	X ⇒ <i>G</i> (p)	N*	(1-p) ^{k-1} p	<u>1</u>	<u>q</u> p²
Loi de Poisson Pas de modèle.	$X \Rightarrow \mathcal{P}(\lambda)$	N	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ

N.B.: les résultats grisés (ainsi que la loi de Pascal) ne sont pas au programme.