

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Soit n un entier naturel. Calculer les sommes :

$$-A = C_n^0 + 2C_n^2 + \dots + 2^p C_n^{2p} + \dots$$

$$-B = C_n^1 + 2C_n^3 + \dots + 2^p C_n^{2p+1} + \dots$$

EXERCICE 2 [Indication] [Correction]

Soit n un entier naturel non nul.

Calculer
$$A = C_n^1 + 2C_n^2 + \dots + nC_n^n = \sum_{k=1}^n kC_n^k$$
.

On donnera trois méthodes différentes!

EXERCICE 3 [Indication] [Correction]

Soit n un entier naturel non nul.

Calculer
$$B = C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + \dots + \frac{1}{n+1}C_n^n = \sum_{k=0}^n \frac{1}{k+1}C_n^k$$
.

On donnera deux méthodes différentes!

EXERCICE 4 [Indication] [Correction]

Pour tout entier naturel
$$n$$
, calculer $A = C_n^1 + 2^2 C_n^2 + \dots + n^2 C_n^n = \sum_{k=1}^n k^2 C_n^k$.

On donnera deux méthodes différentes!

EXERCICE 5 [Indication] [Correction]

Soient n et p deux entiers naturels. Prouver que $\sum_{k=n}^{p} C_k^n = C_{p+1}^{n+1}$.

On donnera trois méthodes différentes!

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

On utilise le développement de $(1+x)^n$, avec $x=\pm\sqrt{2}$.

On trouve
$$A = \frac{1}{2} \left((1 + \sqrt{2})^n + (1 - \sqrt{2})^n \right)$$
 et $B = \frac{1}{2\sqrt{2}} \left((1 + \sqrt{2})^n - (1 - \sqrt{2})^n \right)$.

Indication pour l'exercice 2 [Retour à l'énoncé]

- Première méthode : Utiliser $kC_n^k = nC_{n-1}^{k-1}$.
- Deuxième méthode : Dériver $(1+x)^n = \sum_{k=0}^n C_n^k x^k$.
- Troisième méthode :

$$A = \sum_{k=0}^{n} k C_n^k = \sum_{X \subset E} \operatorname{Card} X$$
 (somme étant étendue à toutes les parties X de E.).

Mais on peut aussi écrire $A = \sum_{X \subset E} \operatorname{Card} \overline{X}$.

Indication pour l'exercice 3 [Retour à l'énoncé]

- Première méthode : Utiliser $\frac{1}{k+1}C_n^k = \frac{1}{n+1}C_{n+1}^{k+1}$.
- Deuxième méthode : Intégrer $(1+x)^n = \sum_{k=0}^n C_n^k x^k$.

Indication pour l'exercice 4 [Retour à l'énoncé]

- Première méthode : Utiliser $k(k-1)C_n^k = n(n-1)C_{n-2}^{k-2}$.
- Deuxième méthode : Dériver deux fois $(1+x)^n = \sum_{k=0}^n C_n^k x^k$.

INDICATION POUR L'EXERCICE 5 [Retour à l'énoncé]

- Première méthode : Par récurrence sur p, à n fixé.
- Deuxième méthode : Utiliser $C_k^n = C_{k+1}^{n+1} C_k^{n+1}$.
- Troisième méthode :

Soit \mathcal{A} l'ensemble des parties de $\{1, 2, \dots, p+1\}$ qui ont n+1 éléments.

Faire un dénombrement des X de \mathcal{A} suivant la valeur de $\max(X)$.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

Corrigé de l'exercice 1 [Retour à l'énoncé]

On utilise le développement de $(1+x)^n$, avec $x=\pm\sqrt{2}$. On trouve en effet :

$$(1+\sqrt{2})^n = \sum_{k=0}^n (\sqrt{2})^k C_n^k$$

= $C_n^0 + \sqrt{2}C_n^1 + 2C_n^2 + 2\sqrt{2}C_n^3 + 2^2C_n^4 + 2^2\sqrt{2}C_n^5 + \cdots$
= $A + B\sqrt{2}$

De même, $(1 - \sqrt{2})^n = A - B\sqrt{2}$.

On en déduit :
$$A = \frac{1}{2} \left((1 + \sqrt{2})^n + (1 - \sqrt{2})^n \right)$$
 et $B = \frac{1}{2\sqrt{2}} \left((1 + \sqrt{2})^n - (1 - \sqrt{2})^n \right)$.

Corrigé de l'exercice 2 [Retour à l'énoncé]

- Première méthode :

On a
$$A = \sum_{k=1}^{n} k C_n^k$$
. Or $k C_n^k = \frac{n!}{(k-1)!(n-k)!} = n C_{n-1}^{k-1}$.

On en déduit
$$A = n \sum_{k=1}^{n} C_{n-1}^{k-1} = n \sum_{k=0}^{n-1} C_{n-1}^{k} = n 2^{n-1}$$
.

- Deuxième méthode :

Pour tout réel x, on sait que $(1+x)^n = \sum_{k=0}^n C_n^k x^k$.

Si on dérive cette égalité par rapport à x, on trouve : $\forall x \in \mathbb{R}, n(1+x)^{n-1} = \sum_{k=1}^{n} k \operatorname{C}_{n}^{k} x^{k-1}$.

En particulier avec x = 1, on obtient : $\sum_{k=1}^{n} k C_n^k = n2^{n-1}$.

- Troisième méthode :

 C_n^k est le nombre de parties à k éléments de $E = \{1, \dots, n\}$.

Donc $A = \sum_{k=0}^{n} k C_n^k = \sum_{X \subseteq E} \operatorname{Card} X$ (somme étant étendue à toutes les parties X de E.)

Or quand X décrit $\mathcal{P}(E)$, \overline{X} décrit lui aussi $\mathcal{P}(E)$.

On peut donc également écrire :

$$A = \sum_{X \subset E} \operatorname{Card} \overline{X} = \sum_{X \subset E} (n - \operatorname{Card} X) = n \sum_{X \subset E} 1 - \sum_{X \subset E} \operatorname{Card} X = n2^n - A.$$

On retrouve donc bien $A = n2^{n-1}$.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigé de l'exercice 3 [Retour à l'énoncé]

- Première méthode :

Comme pour A, on note que $(n+1)C_n^k = (k+1)C_{n+1}^{k+1}$ donc $\frac{1}{k+1}C_n^k = \frac{1}{n+1}C_{n+1}^{k+1}$.

Ainsi :
$$B = \sum_{k=0}^{n} \frac{1}{k+1} C_n^k = \frac{1}{n+1} \sum_{k=0}^{n} C_{n+1}^{k+1} = \frac{1}{n+1} \sum_{k=1}^{n+1} C_{n+1}^k = \frac{1}{n+1} (2^{n+1} - 1)$$

- Deuxième méthode :

On intègre l'égalité $(1+x)^n = \sum_{k=0}^n C_n^k x^k$ entre 0 et x.

On trouve
$$\frac{1}{n+1}((1+x)^{n+1}-1) = \sum_{k=0}^{n} C_n^k \frac{1}{k+1} x^{k+1}$$
.

On donne à x la valeur 1 et on obtient : $\sum_{k=0}^{n} \frac{1}{k+1} C_n^k = \frac{1}{n+1} (2^{n+1} - 1)$.

CORRIGÉ DE L'EXERCICE 4 [Retour à l'énoncé]

Première méthode:

On note que
$$C = \sum_{k=1}^{n} k C_n^k + \sum_{k=1}^{n} k(k-1) C_n^k = \sum_{k=1}^{n} k C_n^k + \sum_{k=2}^{n} k(k-1) C_n^k$$
.

Comme on l'a vu dans l'exercice précédent, $A = \sum_{k=1}^{n} k C_n^k = n2^{n-1}$.

D'autre part, pour tout $k \geq 2$: $k(k-1)C_n^k = n(n-1)C_{n-2}^{k-2}$.

Donc
$$\sum_{k=2}^{n} k(k-1) C_n^k = n(n-1) \sum_{k=2}^{n} C_{n-2}^{k-2} = n(n-1) \sum_{k=0}^{n-2} C_{n-2}^k = n(n-1) 2^{n-2}$$
.

On en déduit $C = n2^{n-1} + n(n-1)2^{n-2} = n(n+1)2^{n-2}$.

Deuxième méthode:

On dérive deux fois
$$f(x) = (1+x)^n = \sum_{k=0}^n C_n^k x^k$$
.

$$\begin{cases} f'(x) = n(1+x)^{n-1} = \sum_{k=1}^{n} k C_n^k x^{k-1} \\ f''(x) = n(n-1)(1+x)^{n-2} = \sum_{k=2}^{n} k(k-1) C_n^k x^{k-2} \end{cases}$$

En particulier, avec x = 1:

$$f'(1) = n2^{n-1} = \sum_{k=1}^{n} k C_n^k$$
 et $f''(1) = n(n-1)2^{n-2} = \sum_{k=2}^{n} k(k-1) C_n^k$.

On démarre la deuxième somme à k=1. On ajoute les deux sommes et on trouve :

$$C = \sum_{k=1}^{n} k^{2} C_{n}^{k} = f'(1) + f''(1) = n2^{n-1} + n(n-1)2^{n-2} = n(n+1)2^{n-2}.$$

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

CORRIGÉ DE L'EXERCICE 5 [Retour à l'énoncé]

- Première méthode

On procède par récurrence sur p, à n fixé.

On constate que la propriété est vraie si p = n (c'est le pas initial.)

Supposons qu'elle le soit pour un certain entier $p \ge n$. Alors, au rang p + 1, on a :

$$\sum_{k=n}^{p+1} C_k^n = \sum_{k=n}^p C_k^n + C_{p+1}^n$$

$$= C_{p+1}^{n+1} + C_{p+1}^n \quad \text{(hypothèse de récurrence)}$$

$$= C_{p+2}^{n+1} \quad \text{(triangle de Pascal)}$$

Ce qui prouve la propriété au rang p+1 et donc achève la récurrence.

Deuxième méthode

On utilise là encore la propriété qui est à la base du triangle de Pascal.

Pour tout entier k > n, on a : $C_k^n = C_{k+1}^{n+1} - C_k^{n+1}$. On en déduit :

$$\sum_{k=n}^{p} C_{k}^{n} = C_{n}^{n} + \sum_{k=n+1}^{p} C_{k}^{n} = 1 + \sum_{k=n+1}^{p} \left(C_{k+1}^{n+1} - C_{k}^{n+1} \right)$$

$$= 1 + \sum_{k=n+1}^{p} C_{k+1}^{n+1} - \sum_{k=n+1}^{p} C_{k}^{n+1} = 1 + \sum_{k=n+2}^{p+1} C_{k}^{n+1} - \sum_{k=n+1}^{p} C_{k}^{n+1}$$

$$= 1 + C_{p+1}^{n+1} - C_{n+1}^{n+1} = C_{p+1}^{n+1}$$

- Troisième méthode

Soit \mathcal{A} l'ensemble des parties de $\{1, 2, \dots, p+1\}$ qui ont n+1 éléments.

On sait que le cardinal de l'ensemble \mathcal{A} est C_{p+1}^{n+1} .

Si X est un élément de \mathcal{A} , alors $\max(X) \in \{n+1, \dots, p+1\}$.

On note A_k le sous-ensemble de A formé des parties d'élément maximum k+1.

L'ensemble \mathcal{A} est la réunion disjointe des \mathcal{A}_k , pour $n \leq k \leq p$.

Pour former un élément de \mathcal{A}_k , c'est-à-dire une partie X de $\{1, 2, \ldots, p+1\}$ ayant n+1 éléments et telle que $\max(X) = k+1$, il faut bien entendu choisir arbitrairement n éléments parmi $\{1, 2, \ldots, k\}$, ce qui peut se faire de \mathbb{C}_k^n façons différentes.

Ainsi Card $\mathcal{A}_k = \mathbb{C}_k^n$ et de plus Card $\mathcal{A} = \sum_{k=n}^p \mathbb{C}_k$ On en déduit $\mathbb{C}_{p+1}^{n+1} = \sum_{k=n}^p \mathbb{C}_k^n$.

Page 5 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.