ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES

Partie I : Systèmes différentiels linéaires d'ordre 1

Systèmes différentiels linéaires d'ordre 1 Ι

NB : seuls les systèmes différentiels linéaires X' = AX, où A est une matrice constante de $\mathcal{M}_n(\mathbb{K})$, sont au programme de la classe PC. Tout le reste est en complément.

I.1 Généralités

Définition

Soient I un intervalle de \mathbb{R} , non vide ni réduit à un point, et n un entier naturel.

Soit $t \mapsto A(t)$ une application continue sur I, à valeurs dans $\mathcal{M}_n(\mathbb{K})$.

Soit $t \mapsto B(t)$ une application continue sur I à valeurs dans \mathbb{K}^n .

Soit $t \mapsto X(t)$ une application définie sur I à valeurs dans \mathbb{K}^n .

On dit que l'application X est solution sur I du système (S): X' = A(t)X + B(t), si :

- L'application X est dérivable sur I. Pour tout t de I, on a l'égalité X'(t) = A(t)X(t) + B(t).

Remarques et définitions

- On dit que S est un système différentiel linéaire d'ordre 1.
- Le système (H): X' = A(t)X est appelé système homogène associé à (S).
- Toute solution de (S) ou de (H) sur I est nécessairement de classe \mathcal{C}^1 sur I.

Définition (Problème de Cauchy)

Le problème de Cauchy consiste à chercher s'il existe une solution $t \mapsto X(t)$ de (S) prenant $\|$ en un point donné t_0 de I une valeur donnée X_0 dans \mathbb{K}^n .

Proposition

Pour le système (S), et donc pour le système (H), le problème de Cauchy admet une solution unique, sur l'intervalle I tout entier.

Proposition (Structure de l'ensemble des solutions de (H))

L'ensemble \mathcal{S}_H des solutions de (H) sur I est un espace vectoriel de dimension n.

Proposition (Structure de l'ensemble des solutions de (S))

La solution générale de (S) s'obtient en ajoutant, à la solution générale de (H), une solution particulière X_0 de (S).

Conséquence

Si Z_1, Z_2, \ldots, Z_n forment une base de \mathcal{S}_H la solution générale de (S) s'écrit donc :

 $X: t \mapsto X_0(t) + \lambda_1 Z_1(t) + \lambda_2 Z_2(t) + \dots + \lambda_n Z_n(t)$, où $\lambda_1, \dots, \lambda_n$ sont des éléments de IK.

©EduKlub S.A. Page 1 Jean-Michel Ferrard www.klubprepa.net

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES

Partie I : Systèmes différentiels linéaires d'ordre 1

Proposition (Principe de superposition des solutions)

On suppose que le "second membre" B(t) de (S) s'écrit $B(t) = \alpha_1 B_1(t) + \cdots + \alpha_k B_k(t)$, où les applications B_1, \ldots, B_k sont continues de I dans \mathbb{K}^n , et où les α_j sont dans \mathbb{K} .

On suppose en outre que les applications $X_j:I\subset\mathbb{R}\to\mathbb{K}^n$ sont des solutions particulières du système $(S_j):X'=A(t)X+B_j(t)$.

Alors l'application $X = \alpha_1 X_1 + \cdots + \alpha_k X_k$ est une solution particulière de (S) sur I.

I.2 Systèmes homogènes à coefficients constants

Si l'application matricielle $t \mapsto A(t)$ est constante, on dit que le système différentiel homogène (H) est à coefficients constants.

Si on note $X(t) = (x_1(t), x_2(t), \dots, x_n(t),$ et si A est la matrice de terme général a_{ij} , alors le système homogène (H) s'écrit :

$$\forall t \in I, \begin{cases} x'_1(t) = a_{11} x_1(t) + a_{12} x_2(t) + \dots + a_{1j} x_j(t) + \dots + a_{1n} x_n(t) \\ x'_2(t) = a_{21} x_1(t) + a_{22} x_2(t) + \dots + a_{2j} x_j(t) + \dots + a_{2n} x_n(t) \\ \dots \dots \dots \dots \\ x'_i(t) = a_{i1} x_1(t) + a_{i2} x_2(t) + \dots + a_{ij} x_j(t) + \dots + a_{in} x_n(t) \\ \dots \dots \dots \dots \\ x'_n(t) = a_{n1} x_1(t) + a_{n2} x_2(t) + \dots + a_{nj} x_j(t) + \dots + a_{nn} x_n(t) \end{cases}$$

Utilisation de la réduction de la matrice

- Cas où la matrice du système est diagonalisable

Notons $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A, chacune comptée autant de fois que sa multiplicité. Il existe donc une matrice diagonale D (de coefficients diagonaux $\lambda_1, \lambda_2, \ldots, \lambda_n$) et une matrice P de $\mathcal{GL}(n, \mathbb{K})$ telles que $D = P^{-1}AP$.

On effectue le changement de fonction inconnue défini par X(t) = PY(t).

Le système (H) devient alors :

$$(H'):Y'(t)=P^{-1}X'(t)=P^{-1}AX(t)=P^{-1}APY(t)=DY(t)$$

La k-ème ligne (L'_k) de (H') s'écrit $y'_k(t) = \lambda_k y_k(t)$: c'est une équation différentielle scalaire d'ordre 1 dont la solution générale est $y_k(t) = \alpha_k \exp(\lambda_k t)$, avec α_k dans IK.

On trouve alors la solution générale de (H) en revenant à X = PY.

Si on note u_1, \ldots, u_n les vecteurs colonnes de P (qui sont vecteurs propres de A pour les valeurs propres $\lambda_1, \lambda_2, \ldots, \lambda_n$), la solution générale de (H) s'écrit :

$$X(t) = \alpha_1 \exp(\lambda_1 t) u_1 + \alpha_2 \exp(\lambda_2 t) u_2 + \dots + \alpha_n \exp(\lambda_n t) u_n$$

où $(\alpha_1, \alpha_2, \dots, \alpha_n)$ est un élément quelconque de \mathbb{K}^n .

On voit bien que \mathcal{S}_H est un espace vectoriel de dimension n sur \mathbb{K} , et qu'une base de cet espace vectoriel est formée des applications $t \mapsto \varphi_k(t) = \exp(\lambda_k t) u_k$, où (u_1, \dots, u_n) est une base de \mathbb{K}^n formée de vecteurs propres de A, pour les valeurs propres $\lambda_1, \lambda_2, \dots, \lambda_n$.

Remarque : Pour résoudre (H), le calcul de P^{-1} n'est pas nécessaire.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

- Diagonalisation dans C, pour un système réel

On suppose ici que $\mathbb{K} = \mathbb{R}$. Si A est diagonalisable dans \mathbb{C} (sans l'être dans \mathbb{R}) on peut résoudre (S) en utilisant la diagonalisation de A dans \mathbb{C} .

Avec les notations précédentes, on range les valeurs propres de A pour que $\lambda_2 = \overline{\lambda_1}, \lambda_4 = \overline{\lambda_3}, \lambda_{2p} = \lambda_{2p-1}$ (valeurs propres non réelles), avec les vecteurs propres $u_2 = \overline{u_1}, \dots, u_{2p} = \overline{u_{2p-1}}$, puis $\lambda_{2p+1}, \dots, \lambda_n$ (valeurs propres réelles).

A partir de la base de S_H formée des applications $t \mapsto \varphi_k(t) = \exp(\lambda_k t) u_k$ (pour $1 \le k \le n$) on construit une base de solutions réelles de (H) de la manière suivante :

Pour tout k de $\{1,\ldots,p\}$, on remplace φ_{2k} et $\varphi_{2k-1} = \overline{\varphi_{2k}}$ par $\operatorname{Re}(\varphi_{2k})$ et par $\operatorname{Im}(\varphi_{2k})$.

Pour tout k > p, on conserve les applications φ_k car elles sont à valeurs réelles.

- Utilisation de la trigonalisation (complément)

On suppose $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . La matrice A est (au besoin dans \mathbb{C}) trigonalisable.

Il existe deux matrices, P inversible, et T triangulaire supérieure, (de coefficients diagonaux les valeurs propres $\lambda_1, \dots, \lambda_n$ de A) telles que $T = P^{-1}AP$.

Les systèmes (S) et (H) deviennent, en posant encore X = PY, et $C(t) = P^{-1}B(t)$:

$$(S'): Y'(t) = TY(t) + P^{-1}B(t), \text{ et } (H): Y'(t) = TY(t).$$

La *n*-ième ligne (L'_n) de (S') est : $y'_n(t) = \lambda_n y_n(t) + c_n(t)$.

La solution générale de (L'_n) s'écrit $y_n(t) = \alpha \exp(\lambda_n t) + \beta_n(t)$ (où α est dans IK et où β est une solution particulière de (L'_n)).

On résout alors progressivement (E') de la dernière équation à la première.

On obtient enfin la solution générale de (E) en revenant à X = PY.

Remarque : là encore, le calcul de P^{-1} est inutile pour résoudre (H).

I.3 Exponentielles de matrices (compléments)

Définition

Soit A une matrice de $\mathcal{M}_n(\mathbb{I}K)$.

L'exponentielle de A est la limite, dans $\mathcal{M}_n(\mathbb{K})$, de la suite de terme général $S_N = \sum_{k=0}^N \frac{1}{k!} A^k$.

On note
$$\exp(A) = \sum_{k=0}^{+\infty} \frac{1}{k!} A^k$$
.

Remarques et propriétés

- Pour tout λ de IK, $\exp(\lambda I_n) = \exp(\lambda)I_n$. En particulier $\exp(0_n) = I_n$.
- Si A, B commutent dans $\mathcal{M}_n(\mathbb{IK})$, alors $\exp(A+B) = \exp(A)\exp(B)$.
- En particulier, pour tout A de $\mathcal{M}_n(\mathbb{K})$, $\exp(A)$ est une matrice carrée inversible et $\exp(-A) = (exp(A))^{-1}$.

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \exp(A) \in \mathcal{GL}(n, \mathbb{K}), \text{ et } \exp(-A) = (exp(A))^{-1}.$$

- Si $A = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$, alors $\exp(A) = diag(\exp(\lambda_1), \dots, \exp(\lambda_n))$.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES

Partie I : Systèmes différentiels linéaires d'ordre 1

- L'application $t \mapsto f(t) = \exp(tA)$ est dérivable, et $f'(t) = A \exp(tA) = \exp(tA)A$.
- Supposons que A s'écrive A = D + N, avec D diagonale, N strictement triangulaire, et telles que ND = DN. Une telle décomposition apparaît quand on trigonalise A. Soit r un entier tel que $N^r = 0$.

Alors
$$\exp(A) = \exp(D) \exp(N) = \exp(D) \sum_{k=0}^{r-1} \frac{N^k}{k!}$$
.

Utilisation de $\exp(tA)$ dans la résolution de (H)

Soit A une matrice de $\mathcal{M}_n(\mathbb{K})$. On considère le système linéaire (H): X'(t) = AX(t). Soit t_0 un réel, et X_0 un élément de \mathbb{R}^n .

L'unique solution de (H) qui vaut X_0 au point t_0 est : $t \mapsto X(t) = \exp((t - t_0)A)X_0$.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.