II Applications de classe Ck

On rappelle que I désigne un intervalle de \mathbb{R} non réduit à un point.

Les espaces vectoriels normés E, F, G sont de dimension finie sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

II.1 Opérations sur les applications de classe C1

Proposition (Linéarité de la dérivation)

 $C^1(I, E)$ est un sous-espace vectoriel de l'espace C(I, E) des applications continues de I dans E, lui-même un sous-espace de l'espace F(I, E) de toutes les applications I dans E. $\forall f, g \in C^1(I, E), \forall (\lambda, \mu) \in \mathbb{K}^2 : (\lambda f + \mu g)' = \lambda f' + \mu g'$.

Proposition (Composition par une application linéaire)

Soit f une application de I dans E, de classe \mathcal{C}^1 .

Soit u une application linéaire de E dans F.

Alors $u \circ f$ est de classe C^1 de I dans F, et (uof)' = uof'.

Proposition (Composition par une application bilinéaire)

Soit f une application de I dans E, de classe C^1 .

Soit g une application de I dans F, de classe C^1 .

Soit B une application bilinéaire de $E \times F$ dans G.

Alors l'application h définie par h(x) = B(f(x), g(x)) est de classe C^1 de I dans G.

De plus h' = (B(f,g))' = B(f',g) + B(f,g').

Cas particuliers

– Si E est une algèbre normée, et si f et g sont de classe C^1 de I dans E, alors h = fg est de classe C^1 sur I et h' = f'g + fg'.

Par récurrence, on vérifie alors que si f_1, f_2, \ldots, f_n sont de classe \mathcal{C}^1 sur I alors $f = f_1 f_2 \cdots f_n$ est de classe \mathcal{C}^1 sur I et $f' = \sum_{k=1}^n f_1 \cdots f_{k-1} f'_k f_{k+1} \cdots f_n$.

Si de plus E est commutative, alors pour tout entier $p:(f^p)'=p\,f'\,f^{p-1}$.

Le cas le plus courant est évidemment $E = \mathbb{I}K$.

- Soient $f: I \to E$, et $\lambda: I \to \mathbb{K}$ de classe \mathcal{C}^1 . Alors $g = \lambda f$ est de classe \mathcal{C}^1 sur I et $(\lambda f)' = \lambda' f + \lambda f'$.
- Si f, g sont de classe C^1 dans I et si E est muni d'un produit scalaire, alors l'application $\langle f, g \rangle$ est de classe C^1 et $\langle f, g \rangle' = \langle f', g \rangle + \langle f, g' \rangle$.
- Si E est un espace vectoriel euclidien orienté de dimension 3, et si f et g sont de classe \mathcal{C}^1 de I dans E, alors $f \wedge g$ est de classe \mathcal{C}^1 et $(f \wedge g)' = f' \wedge g + f \wedge g'$.

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Proposition (Dérivée de l'inverse)

Soit g une application de classe \mathcal{C}^1 de I dans $\mathbb{I}K$, ne s'annulant pas.

Alors
$$\frac{1}{g}$$
 est de classe C^1 sur I et : $\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$.

La formule $(g^m)' = mg'g^{m-l}$ est alors vraie pour tout entier relatif m.

Si $f: I \to E$ est de classe \mathcal{C}^1 alors $\frac{f}{g}$ est de classe \mathcal{C}^1 sur I et : $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$.

Proposition (Dérivée d'une fonction composée)

Soit $\varphi: I \to \mathbb{R}$, de classe \mathcal{C}^1 . Soit J un intervalle contenant $\varphi(I)$ et non réduit à un point.

Soit f une application de classe C^1 de J dans E.

Alors $f \circ \varphi$ est de classe \mathcal{C}^1 de I dans E et : $(f \circ \varphi)' = \varphi' \cdot (f' \circ \varphi)$.

Autrement dit : $\forall t \in I, (f \circ \varphi)'(t) = \varphi'(t) \cdot f'(\varphi(t)).$

II.2 Dérivées successives

Définition (Applications n fois dérivables sur un intervalle)

Soit f une application de I dans E. On pose $f^{(0)} = f$.

On suppose que l'application $f^{(n-1)}$ existe et est dérivable de I dans E.

On définit alors l'application $f^{(n)} = (f^{(n-1)})'$.

Si l'application $f^{(n)}: I \to E$ existe, on dit que f est n fois dérivable sur l'intervalle I, et $f^{(n)}$ est appelée application dérivée n-ième de f sur I.

L'application $f^{(n)}$ est parfois notée $D^n f$ ou encore $\frac{d^n f}{d x^n}$.

Remarque (Vecteur dérivé n-ième en un point)

Soit f une application de I dans E, a un point de I et n un entier naturel. On dit que f est n fois dérivable en a si f est n-1 fois dérivable sur un voisinage de a et si $f^{(n-1)}$ est dérivable en a.

On note encore $f^{(n)}(a)$ cette dérivée, appelée vecteur dérivé n-ième de f au point a de I (il n'est pas nécessaire que $f^{(n)}$ existe sur I tout entier.)

Définition (Applications de classe C^k)

Soit f une application de I dans E, k fois dérivable.

Si de plus l'application $f^{(k)}$ est continue sur I, on dit que f est de classe C^k sur I.

On note $C^k(I, E)$ l'ensemble des applications de classe C^k de I dans E.

On dit que f est de classe \mathcal{C}^{∞} sur I si f est k fois dérivable sur I pour tout entier naturel k (c'est-à-dire en fait si f est de classe \mathcal{C}^k pour tout k).

On note $\mathcal{C}^{\infty}(I, E)$ l'ensemble de ces applications.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Remarque

 $\mathcal{C}^0(I,E)$ désigne l'ensemble des applications continues de I dans E.

On a les inclusions $C^0(I, E) \supset C^1(I, E) \supset \cdots \supset C^k(I, E) \supset \cdots \supset C^{\infty}(I, E)$.

De même on a : $C^{\infty}(I, E) = \bigcap_{k \in \mathbb{N}} C^k(I, E)$.

II.3 Opérations sur les applications de classe Ck

Proposition (Combinaisons linéaires d'applications de classe C^k)

 $\mathcal{C}^k(I,E)$ est un espace vectoriel sur IK.

L'application $f \mapsto f^{(k)}$ est linéaire de $\mathcal{C}^k(I, E)$ dans $\mathcal{C}^0(I, E)$.

Proposition (Formule de Leibniz)

Soit n un élément de $\mathbb{N} \cup \{+\infty\}$. Soient f et g deux applications de classe \mathcal{C}^k de I dans \mathbb{K} .

Alors
$$fg$$
 est de classe \mathcal{C}^k sur I et : $(fg)^{(n)} = \sum_{k=0}^n C_n^k f^{(k)} g^{(n-k)}$.

Remarques

- Le résultat précédent implique que $\mathcal{C}^n(I,\mathbb{K})$ est muni d'une structure d'algèbre.
- "Leibniz" est encore valable si f est à valeurs dans IK et g est à valeurs dans E, ou si f et g sont toutes deux à valeurs dans une algèbre normée E.

Proposition (Inverse d'une application de classe C^k)

 $\parallel \operatorname{Si} f: I \to \operatorname{I\!K}$ est de classe \mathcal{C}^k sur I et ne s'annule pas, alors $\frac{1}{f}$ est de classe \mathcal{C}^k sur I.

Proposition (Composition d'applications de classe C^k)

Soit φ une application de classe \mathcal{C}^k de I dans \mathbb{R} .

Soit J un intervalle de \mathbb{R} , non réduit à un point et contenant $\varphi(I)$.

Soit f une application de classe \mathcal{C}^k de J dans E.

Alors l'application $f \circ \varphi$ est de classe \mathcal{C}^k de I dans E.

II.4 Difféomorphismes

Définition (C^k -difféomorphismes)

Soient I et J deux intervalles de ${\rm I\!R},$ non réduits à un point.

On dit qu'une application f de I dans J est un C^k -difféomorphisme si f est une bijection de I sur J, et si les deux applications f et f^{-1} sont de classe C^k .

Proposition (Caractérisation des C^k -difféomorphismes)

||f| est un \mathcal{C}^k -difféomorphisme de I sur $J=f(I)\Leftrightarrow f$ est de classe \mathcal{C}^k sur I et, pour tout x de I, $f'(x)\neq 0$.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

DÉRIVATION ET INTÉGRATION

Partie II : Applications de classe Ck

II.5 Applications de classe Ck par morceaux

Définition

Soit f une application définie sur le segment [a, b], à valeurs dans E.

Soit k un entier naturel. On dit que f est de classe C^k par morceaux sur [a, b] s'il existe une subdivision $\{a_0 = a < a_1 < \ldots < a_{n-1} < a_n = b\}$ de [a, b] telle que la restriction de f à chaque sous-intervalle $[a_j, a_{j+1}]$ soit de classe C^k et soit prolongeable en une application de classe C^k sur $[a_j, a_{j+1}]$.

Dans ce cas, on dit que la subdivision $(a_j)_{0 \le j \le n}$ est adaptée à f.

Remarques

- Si f est de de classe C^k par morceaux sur [a, b] alors ses dérivées successives, encore notées f^j ou $D^j(f)$ avec $1 \le j \le k$, sont définies sur [a, b] privé d'un nombre fini de points.
- Si I est un intervalle quelconque de \mathbb{R} (et donc plus nécessairement un segment), l'application $f: I \to E$ est dite de classe \mathcal{C}^k par morceaux sur I si f est de classe \mathcal{C}^k par morceaux sur tout sous-segment de I.
- On vérifie que l'ensemble $\mathcal{M}^k(I, E)$ des applications de classe \mathcal{C}^k par morceaux sur I, à valeurs dans E, est un sous-espace vectoriel de $\mathcal{F}(I, E)$.

Proposition (Caractérisation des applications constantes)

Soit f une application de I dans E, continue et de classe C^k par morceaux.

Alors f est constante sur $I \Leftrightarrow Df \equiv 0$ sur I.

(Cette propriété est surtout utile dans le sens ←.)

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.